

All

▼

Q

ADVANCED SEARCH

Conferences > 2023 International Conference

Activity Prediction in Tri Pramana Learning Concept in ResNet-based Virtual Reality Environment

Publisher: IEEE

[Cite This](#)I Gede Partha Sindu ; Rukmi Sari Hartati ; Made Sudarma ; Nyoman Gunantara [All Authors](#)**1**
Cites in
Paper**21**
Full
Text Views**Need
Full-Text**access to IEEE Xplore
for your organization?[CONTACT IEEE TO SUBSCRIBE](#) ▶**More Like This**

Impact of Training and Testing
Data Splits on Accuracy of Time
Series Forecasting in Machine
Learning

2017 International Conference on
Computing, Communication, Control
and Automation (ICCUBEA)
Published: 2017

Decision Tree: Review of
Techniques for Missing Values at
Training, Testing and
Compatibility

2015 3rd International Conference on
Artificial Intelligence, Modelling and
Simulation (AIMS)
Published: 2015

Abstract**Abstract:**

Document Sections

This research aims to visually predict activities in the Tri Pramana Learning Concept in a virtual reality (VR) environment using the ResNet-50 deep learning architecture. The method in this research consists of dataset preparation (data acquisition, frame extraction, data cleaning, image resizing, data subsetting), ResNet-50 model building, and evaluation. The data used in this study comes from learning recordings in a virtual classroom environment of fiber optic splicing practicum. The total number of images in this dataset is 2,163 which is divided into training subset (70%), validation subset (20%), and testing subset (10%). This research focuses on experimenting with epoch variations of 100, 200, 300, and 400 to produce the best model. Through the investigation, it was found that the model with epoch 400 was able to provide the best performance with Accuracy 97.72%, Precision 97.81%, Recall 97.77%, and F1-Score 97.79%. Future experiments will focus on the variation of learning rate and batch hyperparameters as well as comparisons with other deep learning architectures to predict activities in the Tri Pramana Learning Concept in virtual environments.

Authors

Published in: 2023 International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS)

Figures

References

Date of Conference: 02-04 November 2023

DOI: 10.1109/ICSGTEIS60500.2023.10424277