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Segmentasi Tumor Otak Berdasarkan Citra Magnetic
Resonance Imaging Dengan Menggunakan Metode U-NET

Ida Bagus Leo Mahadya Suta', Made Sudarma?, | Nyoman Satya Kumara®
[Submission: 11-02-2020, Accepted: 13-11-2020]

Abstract—Brain tumor is a deadly disease where 3.7% per
100,000 patients have malignant tumors. To analyze brain
tumors can be done through magnetic resonance imaging (MRI)
image segmentation. Automatic image analysis process is needed
to save time and improve accuracy of doctor diagnoses.
Automatic segmentation can be done with deep learning. U-NET
is one of the methods used to segment medical images because it
works at pixel level. By applying the ReLU and Adam Optimizer
activation function, this method can solve the problem of
segmenting brain tumors. Dataset for the training and validation
process using BRATS 2017. Several hyperparameters are applied
to this method: learning rate (Ir) = 0.0001, batch size (bz) = 5,
epoch = 80 and beta (b;) = 0.9. From a series of processes
carried out, accuracy of the U-NET method is calculated by Dice
Coefficient formula and results in following accuracy values,
during training of 90.22% (Full Tumor), 78.09% (Core Tumor)
and 80.20% (Enhancing Tumor).

Intisari— Salah satu penyakit yang paling mematikan adalah
tumor otak dengan tingkat kematian mencapai 3.7% per 100.000
pasien. Untuk menganalisa tumor otak dapat dilakukan melalui
segmentasi citra Magnetic Resonance Imaging (MRI). Proses
analisa citra secara otomatis dibutuhkan untuk menghemat
waktu dan meningkatkan akurasi dari diagnosa yang dilakukan.
Segmentasi secara otomatis dapat dilakukan dengan deep
learning. Khusus pada citra medis metode yang digunakan harus
mampu bekerja pada pixel level agar dapat mencapai akurasi
yang baik, salah satu metode tersebut adalah metode U-NET.
Dengan menerapkan fungsi aktivasi ReLU dan Adam Optimizer,
metode ini dapat menyelesaikan permasalahan segmentasi tumor
otak. Dataset untuk proses training dan validation menggunakan
BRATS 2017. Beberapa hyperparameter diterapkan pada metode
ini yaitu, learning rate (Ir) = 0.0001, batch size (bz) = 5, epoch = 80
dan beta (b;) = 0.9. Dari serangkaian proses yang dilakukan,
akurasi metode U-NET dihitung dengan rumus Dice Coefficient
dan menghasilkan nilai akurasi sebagai berikut: 90.22% (Full
Tumor), 78.09% (Core Tumor) dan 80.20% (Enhancing Tumor).

Kata Kunci— Tumor Otak, MRI, citra medis, deep learning, U-
Net, ReLU, Adam Optimizer, Training, Validation
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Petumbuhan sel yang abnormal dan tidak terkendali pada
otak merupakan penyebab dari tumor otak. Tumor otak
diklasifikasikan menjadi dua jenis, yaitu tumor otak ganas dan
tumor otak jinak. Tumor jinak memiliki tingkat pertumbuhan
sel yang abnormal lebih lambat jika dibandingkan dengan
tumor ganas [1]. Insiden tahunan tumor ganas adalah 3.700
pada laki-laki dan 2.600 pada wanita [1].

Untuk deteksi dini penyakit tumor otak dapat dilakukan
melalui pengambilan citra Magnetic Resonance Imaging
(MRI). MRI merupakan pilihan yang dianggap terbaik karena
tingkat sensitifitasnya sangat tinggi sehingga mampu
memberikan informasi yang akurat [2]. Dalam tumor otak
mengandung soft tissue dan hard tissue, kedua bagian ini
terlihat jelas pada citra MRI [3]. Dokter dapat melakukan
diagnosa melalui citra MRI untuk menentukan tindakan medis
yang harus dilakukan. Diagnosa tidak dapat dilakukan dalam
waktu yang singkat karena dokter harus melakukan
pemetaan/segementasi wilayah tumor otak secara manual
melalui citra MRI [4]. Untuk mengatasi permasalahan tersebut
dibutuhkan segmentasi citra secara otomatis dengan
menggunakan bantuan komputer untuk mempersingkat waktu
yang dibutuhkan dalam diagnosa penyakit tumor otak.
Pengolahan citra digital dengan bantuan komputer
memberikan imbas yang besar dalam bidang medis [5].

Kemampuan komputer untuk menyelesaikan permasalahan
berdasarkan data yang dimiliki dikategorikan sebagai machine
learning (ML). Pada penelitian sebelumnya mengenai
segmentasi tumor otak dengan ML dikategorikan menjadi
metode un-supervised learning [6]-[13] dan supervised
learning [14]-[16]. Kedua metode tersebut dibuat untuk
menyelesaikan permasalahan secara khusus, metode ini tidak
didesain untuk pembelajaran otomatis dari informasi yang
terkandung dalam data. Pembelajaran otomatis dapat
diselesaikan dengan Artificial Neural Network (ANN). Terkait
dengan penelitian ini metode yang sering digunakan untuk
menyelesaikan permasalahan segmentasi dan analisa citra
digital adalah metode Convolutional Neural Network (CNN)
yang merupakan pengembangan dari metode ANN itu sendiri.

Dalam penelitian sebelumnya [17]-[19] metode CNN
berfokus pada jumlah dan ukuran kernel dalam lapisan
konvolusi untuk menawarkan akurasi yang baik pada
segmentasi gambar biomedis. Dalam penelitian [19], [20]
menggunakan ukuran kernel kecil untuk membuat metode ini
bekerja dengan baik pada pixel level, tetapi dampak
negatifnya adalah waktu penyelesaian yang lebih lama.

Permasalahan yang dihadapi oleh metode CNN
konvensional dalam deep learning citra biomedik adalah
akurasi dari segmentasi citra yang dipengaruhi oleh ukuran
kernel, semakin kecil ukuran kernel maka akurasi semakin
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baik. Namun, hal tersebut berdampak pada waktu
penyelesaian metode relatif lebih lama. Dalam penelitian ini
[21] menawarkan metode U-NET CNN yang mampu bekerja
pada pixel level dan memanfaatkan fungsi aktivasi ReLU dan
berhasil memberikan akurasi yang baik dan waktu
penyelesaian yang lebih singkat pada gambar sel mikroskopis.
Sehingga, pada penelitian ini akan menggunakan metode U-
NET dalam segmentasi citra biomedis MRI tumor otak.

Il. STUDI LITERATUR

A. Tumor Otak

Pertumbuhan sel yang tidak normal dan tidak terkendali
pada otak merupakan penyebab tumor otak. Jenis tumor otak
yang paling umum ditemukan adalah Glioma yang memiliki
tingkat kematian yang tinggi. Glioma dibagi menjadi dua jenis,
yaitu High Grade Glioma (HGG) dan Low Grade Glioma
(LGG). Umumnya, pasien yang menderita HGG memiliki
harapan hidup yang lebih rendah dibandingkan dengan LGG.
Biasanya, pasien yang menderita LGG memiliki harapan
hidup antara 6 sampai 15 tahun, namun pasien yang menderita
HGG hanya memiliki harapan hidup sekitar 15 bulan [22].

Gambar 1: (a) Otak Normal, (b) Low Grade Glioma, (c) High Grade Glioma

B. U-Net Convolutional Neural Network

CNN merupakan pengembangan dari ANN dan terdiri dari
neuron yang memiliki bobot, bias dan fungsi aktivasi. CNN
memiliki convolution, pooling dan fully connected layer [23]-
[26]. Citra input akan menghasilkan output dari proses
konvolusi, pada tahapan ini disebut dengan Convolution Layer.
Proses konvolusi mengekstrak fitur dari citra input, proses
konvolusi menggunakan fungsi aktivasi untuk menentukan
jaringan yang aktif atau tidak. Pada penelitian ini fungsi
aktivasi yang digunakan adalah fungsi nonlinier ReLU.
Aktivasi ReLu (Rectifed Linear Unit) merupakan layer
aktivasi yang mengaplikasikan fungsi R(x) = max(0, z) yang
artinya fungsi ini melakukan filterisasi dengan nilai nol
terhadap nilai bobot pada citra input. Gambar 2 menunjukkan
aktivasi ReLU, dimana untuk setiap bobot dengan nilai minus
akan dirubah menjadi nilai bobot nol.

RelU

0

. R(z) =maxz(0, z)

T

éambar 2 F[mgsi Aktivasi Non-Linier ReLU
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Proses selanjutnya adalah pooling layer, Pooling layer
memiliki tujuan untuk mengurangi ukuran sebuah citra.
Selain itu Pooling juga dapat meningkatkan invariasi posisi
dari fitur. Max pooling dan averange pooling adalah metode
yang biasa digunakan pada proses ini [23].

Agar dapat diklasifikasikan secara linier, transformasi data
satu dimensi dilakukan pada tahapan fully connected layer
dengan cara menjumlahkan weight input dan nilai bias
kemudian mengaplikasikannya kedalam fungsi aktivasi ReLU.
Untuk memperoleh nilai rentang probabilitas fungsi softmax
akan diterapkan. Jumlah propabilitas yang dihasilkan sama
dengan satu dengan rentang antara 0 sampai 1.

Avrsitektur U-Net dibangun di atas Fully Convolutional
Network (FCN) dan dimodifikasi sedemikian rupa sehingga
menghasilkan segmentasi yang lebih baik dalam pencitraan
medis. Dibandingkan dengan FCN, dua perbedaan utamanya
adalah (1) U-NET simetris dan (2) koneksi lompatan (skip
connection) antara jalur downsampling dan jalur upsampling
yang menerapkan operator gabungan daripada penjumlahan.
Skip connection ini bertujuan untuk memberikan informasi
lokal ke informasi global selama upsampling. Karena simetris,
jaringan memiliki sejumlah besar feature map di jalur
upsampling, yang memungkinkan untuk mentransfer
informasi. Sebagai perbandingan, arsitektur FCN dasar hanya
memiliki sejumlah peta fitur kelas di jalur upsampling-nya.

164 64

input
image |w|w
tile

output
_| segmentation
5 map

=» conv 3x3, RelLU
copy and crop
¥ max pool 2x2
# up-conv 2x2
= conv 1x1

Gambaf 3. Arxsitektur U-NET
Sumber: Diambil dari [21]

Gambar 3 menggambarkan arsitektur U-NET yang dibagi
menjadi 3 bagian:
1. Jalur contracting/downsamling
2. Bottleneck
3. Jalur expanding/upsampling
Contracting atau downsamling terdiri dari 4 blok, dan
setiap blok tersusun atas
¢ 3x3 Convolution Layer + fungsi aktivasi
¢ 3x3 Convolution Layer + fungsi aktivasi
e 2x2 Max Pooling
Perlu diperhatikan bahwa jumlah feature map akan berlipat
ganda untuk setiap pooling, dimulai dengan 64 feature map
pada blok pertama, 128 untuk blok kedua dan seterusnya.
Contracting bertujuan untuk menangkap konteks gambar
input agar dapat melakukan segmentasi. Informasi kontekstual
kasar ini kemudian akan ditransfer ke jalur upsampling
dengan cara skip connection.

Ida Bagus Leo Mahadya Suta: Segmentasi Tumor Otak Berdasarkan...
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Bottleneck adalah bagian yang terdapat di antara jalur
upsampling dan downsampling. Bottleneck dibangun dari
hanya 2 convolutional layer (dengan batch normalization).
Expanding atau Upsampling memiliki tujuan untuk
memungkinkan lokalisasi yang tepat dikombinasikan dengan
informasi kontekstual dari jalur contracting. Terdiri dari 4
blok dan setiap blok terdiri dari:
o Deconvolution layer dengan 2 stride
¢ Penggabungan dengan feature map yang dipotong dari
jalur contracting

¢ 3x3 Convolution Layer + fungsi aktivasi (dengan
normalisasi batch)
¢ 3x3 Convolution Layer + fungsi aktivasi (dengan

normalisasi batch)

I1l. METODELOGI PENELITIAN

A. Sumber Data

Penelitian ini menggunakan data primer yang berasal dari
Multi Brain Tumor Image Segmentation (BRATS) 2017.
BRATS 2017 memiliki citra MRI dari 210 pasien yang
menderita tumor otak HGG dan 75 pasien tumor otak LGG
yang akan dibagi menjadi 20% data validation dan 80% data
training. Data multimodal MRI tersedia dengan 4 urutan
pemindaian untuk setiap pasien, yaitu T1-weighted (T1), citra
T1-weighted dengan penambahan kontras gadolinium (T1c),
T2-weighted (T2) dan Fluid Attenuated Inversion Recovery
(FLAIR). Selain itu, segmentasi manual dengan empat kelas
intra-tumoral tersedia untuk setiap pasien; (1) necrosis, (2)
edema, (3) non-enhancing, (4) enhancing tumor. Segmentasi
manual ini digunakan sebagai dasar kebenaran pengujian
(ground truth) dalam segmentasi model pada saat training
maupun pada saat validation.

B. Gambaran Umum Sistem

Diagram blok berikut adalah gambaran umum dari alur
proses sistem diagnosa tumor otak berdasarkan citra MRI
yang dapat dilihat pada gambar 4.

Gambar 4. Gambaran Umum Sistem

Pada alur diagram diatas, dapat dilihat sebuah citra MRI
sebelum diproses oleh algortima U-NET akan melalui
beberapa tahapan terlebih dahulu. Diawali dengan proses bias
correction N4ITK untuk menghilangkan noise yang ada pada
citra MRI, tahapan ini sangat berguna untuk meminimalisir
kesalahan pada proses klasifikasi. Kemudian dilakukan proses
data augmentation untuk memperbanyak dataset, dalam
penelitian ini proses augmentation yang dilakukan dengan flip
vertical dan flip horizontal. Algortima U-NET akan
melakukan proses pembelajaran melalui fase training dan
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validation, sehingga menghasilkan Data Model. Data model
adalah kumpulan dataset citra MRI tumor otak yang telah
diolah  sebelumnya oleh algoritma U-NET, untuk
menghasilkan kumpulan data array yang tersimpan sebagai
data pembelajaran. Selanjutnya, algortima U-NET akan
mensegmentasi citra inputan dan menentukan wilayah tumor
otak.

Selama pengujian berlangsung akurasi dan loss akan
dihitung setiap perulangan (epoch) dengan menggunakan
rumus Dice Coefficient. Dice Coefficient merupakan ukuran
overlap antara dua sampel. Ukuran ini berkisar dari 0 sampai
1, dimana Dice Coefficient bernilai 1 adalah yang terbaik.
Fungsi ini awalnya dikembangkan untuk data biner dan dapat

dihitung berdasarkan rumus berikut:
. _ 2]AnB|
Dice = el 1)

Dimana |A n B| mewakili elemen antara set A dan B, |A]|
mewakili jumlah elemen dalam set A dan |B| mewakili
jumlah elemen dalam set B. Sedangkan untuk menghitung
loss atau kesalahan yang dihasilkan oleh model ini, kami
menggunakan fungsi Soft Dice Coefficient yang menggunakan

perhitungan 1 - Dice.

IV.HASIL DAN PEMBAHASAN

Pengujian dilakukan dengan menggunakan dataset BRATS
2017, yang dibagi menjadi dataset training dan validation
dengan rasio 80:20. Pada algortima U-Net yang akan diujikan,
terdapat beberapa hyperparameter dan juga parameter pada
fungsi optimasi Adam Optimizer. Adapun nilai pada
hyperparameter adalah sebagai berikut, learning rate (Ir) =
0.0001, batch size (bz) = 5, epoch = 80 dan beta (b,) = 0.9.

Matrik evaluasi dibagi menjadi tiga wilayah tumor yang
bernama a) Complete/Full Tumor (necrosis, edama,
enhancing dan non enhancing tumor), wilayah kedua adalah
Core Tumor (sama seperti Complete Tumor tanpa edama) dan
yang terakhir adalah Enhancing Tumor.

== Training Accuracy == Validation Accuracy

08

Accuracy
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04
10 20 30 40

Epoch

Gambar 5. Grafik Perbandingan Akurasi Fase Training dan Validation Pada
Proses Segmentasi Full Tumor
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Gambar 6. Grafik Perbandingan Loss Fase Training dan Validation Pada
Proses Segmentasi Full Tumor
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Gambar 7. Grafik Perbandingan Akurasi Fase Training dan Validation Pada
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Proses Segmentasi Core Tumor
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Gambar 8. Grafik Perbandingan Loss Fase Training dan Validation
Pada Proses Segmentasi Core Tumor
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Gambar 9. Grafik Perbandingan Akurasi Fase Training dan
Validation Pada Proses Segmentasi ET Tumor
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Gambar 10. Grafik Perbandingan Loss Selama Fase Validation dan
Testing Pada Proses Segmentasi ET Tumor

Berdasarkan Gambar 5 - 10, menunjukkan bahwa grafik dari
model U-Net tidak menunjukkan kondisi overfitting maupun
underfitting, melainkan menuju pada grafik yang menuju
konvergen. Underfitting merupakan kejadian dimana model
yang telah terbentuk tidak mampu untuk melihat logika dibalik
dataset, sehingga model tidak dapat melakukan prediksi
dengan hasil yang akurat pada data training maupun data
validation. Sedangkan Overfitting terjadi ketika model yang
dibuat terlalu fokus pada training dataset tertentu, sehingga
tidak bisa melakukan prediksi dengan benar apabila diberikan
dataset lain yang serupa. Dalam penelitian ini jumlah epoch =
80, namun karena keterbatasan perangkat, peneliti menerapkan
early stop monitor. Early stop monitor merupakan kondisi
dimana fase training dihentikan sebelum keseluruhan epoch
selesai. Kondisi yang diterapkan adalah, apabila dalam setiap
10 epoch terjadi penurunan akurasi maka fase training akan
dihentikan.

Ketika proses pembelajaran segmentasi full tumor, metode
U-NET tidak mengalami peningkatan akurasi pada epoch ke-
47, sehingga U-NET berhenti pada epoch tersebut. Kondisi
yang sama ditunjukkan juga ketika melakukan proses
pembelajaran pada wilayah core tumor yang tidak mengalami
peningkatakan akurasi pada epoch ke-47 yang menyebabkan
proses pembelajaran terhenti pada epoch tersebut. Pada
enhancing tumor terhenti pada epoch ke-73. Proses selanjutnya
dengan melakukan evaluasi masing masing model yang
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dihasilkan dengan menggunakan fungsi model.evaluate() Berdasarkan Tabel |1, proses segmentasi Full Tumor
sehingga mengetahui rata-rata akurasi dan loss yang dihasilkan. memperoleh hasil akurasi yang paling tinggi dibandingkan
dengan yang lainnya dikarenakan area tumornya paling besar
dan paling jelas dibandingkan dengan area tumor lainnya.
Gambar 11 menunjukkan hasil prediksi segmentasi tumor otak

TABEL |
UHASIL AKURASI DAN LOSS SELAMA PENELITIAN

Segmentasi Epoch Accuracy LosS ang dibandingkan dengan segmentasi manual dari dokter.
Full Tumor 41 90.22% 0.1  |Dapat dilihat bahwa hasil segmentasi otomatis memberikan
Core Tumor 47 78.09% 0.22  |kemiripan yang tinggi dengan segmentasi manual.

Enhancing Tumor 74 80.20% 0.2

i1

Hair Ve

Ground TruthiFull)

Ground Truth(Curel

Ground TruthieT)

Prediction {(Full)

Prediction {ET}

.-

Prediction {Core} Prediction (A}

Gambar 11 Hasil Prediksi Dari Model U-NET Dengan Fungsi Aktivasi ReLU
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fungsi optimasi seperti LReLU, PReLU atau ELU serta
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sebagainya) untuk memperkaya dataset dengan harapan dapat 4]
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