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General Chair’s Message

Welcome to the 2022 International Conference on Data and Software Engineering (ICoDSE),

It gives us an immense pleasure to grace all of your presence at this conference. This year
marks the 8" occasion of this annual conference, which was started in 2014. Institut Teknologi
Bandung as the founder and host of the ICoDSE first organized the conference in 2014 in
Bandung. In 2015, the conference was held in Yogyakarta in collaboration with Universitas
Gadjah Mada. In 2016, the third conference was held in collaboration with Universitas Udayana
in Denpasar, Bali. The following year, the 2017 conference was co-hosted by Universitas
Sriwijaya in Palembang. The fifth ICODSE was co-hosted by Universitas Mataram in Mataram.
In 2019, the sixth ICoDSE was held in Pontianak with Universitas Tanjungpura as the co-host.
In 2021, after a year of hiatus due to COVID-19 pandemic, we organized the 2021 ICoDSE
online in collaboration with Eindhoven University of Technology of the Netherlands and
Universiti Teknologi MARA of Malaysia as co-organizers. This year we gladly present the 2022
International Conference on Data and Software Engineering (ICoDSE) as a hybrid conference.
This year we return once again to the beautiful island, the pride of Indonesia, Bali, with our
respected partner, Universitas Udayana as our co-organizer. As previous ICoDSE, 2022
ICoDSE is technically co-sponsored by IEEE, in particular the Computer Society Indonesia
Chapter.

The theme of this year’s conference is “Data Engineering and Software Engineering in
the Era of Metaverse” The 2022 ICoDSE aims to bridge the knowledge between Academia,
Industry and Community. This is a forum for researchers, scientists and engineers from all
over the world to exchange ideas and discuss the latest progress in their fields. The two-day
conference highlights recent and significant advances in research and development in the field
of Data/Knowledge and Software Engineering.

This year, we have received 58 submissions from authors coming from 11 countries around
the globe, namely Indonesia, Austria, China, Germany, Ghana, Japan, Malaysia, Mexico, South
Africa, Thailand, and the United States. All submissions were peer-reviewed by at least 3
reviewers from external reviewers and the program committee, and 29 papers are accepted
for presentations.

Finally, as the General Chair of the Conference, I would like to express my deep appreciation
to all members of the Steering Committee, Technical Programme Committee, Organizing
Committee and Reviewers who have devoted their time and energy for the success of the
event, especially our partner Universitas Udayana. We also would like to thank all authors,
presenters, and participants for their outstanding contributions to this forum.

It is our sincere wish that this conference would become an exciting meeting place for you to
share ideas, knowledge, and wisdom. Finally, we wish you an enjoyable conference.

Wikan Danar Sunindyo
General Chair of 2022 International Conference on Data and Software Engineering (ICoDSE)
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Abstract—The COVID-19 pandemic has given rise to a
different learning paradigm than before, from offline learning to
online learning. This paradigm is, of course, still popularly used
today even until the pandemic ends in the future. The learning
paradigm in question is the online learning method. Online
learning method not only provides convenience for students or
educators but also creates problems that are very interesting to
observe. One of the variables that become a problem in this
learning method is the students' level of focus in online learning
because online learning requires a lengthy screen time, and
students use different devices. In this study, we will analyze the
level of focus of students participating in online learning using
smartphones and laptops. The problem with online learning is the
different focus conditions due to differences in the use of devices,
affecting the delivery of material received by students. The age
limit of students used as the research object is 18-20 years. The
approach used to analyze this problem is measure the level of
focus using a brain wave recorder Electroencephalogram (EEG).
As many as 25 students will observe their level of focus when
participating in online learning using laptops and smartphones.
Based on research conducted, the focus level of students using
smartphone devices has an attention level of 54.72% and laptops
by 60.80%. Laptop use has a higher level of attention by 5.76%
than smartphone use.

Keywords—Student Focus, Attention Level, Post Pandemic
Education, Elektroensefalogram (EEG), Brainwave.

1. INTRODUCTION

The COVID-19 pandemic from the end of 2019 until now
has not ended, new variants of this virus keep popping up,
which causes people to have to get used to the new habits that
are present today both in the education sector, work, and other
sectors. During the early days of the pandemic, all teaching
and learning processes were abolished to limit the spread of
this virus, and after a while the idea emerged to organize
online education. This idea is stated in the decree of the
Minister of Education Number 4 of 2020 which requires
online learning for Indonesian higher education [1]. To

979-8-3503-9705-5/22/$31.00 ©2022 IEEE
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overcome the paradigm during the pandemic, schools use
online learning methods to make students still able to study
comfortably without fear of being exposed to the COVID-19
virus. This online learning method is certainly many questions
for academics, both in terms of the seriousness of students,
interactions and the effectiveness of this learning method.
Although research on the effectiveness of distance learning via
the internet has been widely carried out [2], not much has been
done on a large scale like this [3], not only in terms of
education but also because many previous studies have been
conducted in the health sector, especially in the field of eye
and eye health ergonomics [4]. The variety of tools used in
online learning is a very interesting research topic to observe,
judging from previous research that took the case of students'
eye health and ergonomics in the implementation of online
learning, in this study, observations will be made regarding
how students concentrate when doing online learning using
tools, the most frequently used are smartphones and laptops
based on brain wave observations using an
electroencephalogram (EEG). Research that compares the
effectiveness of screen sizes in online learning has been
conducted but has not touched the realm of analysis using
EEG, where the research topic is still in the realm of learning
methods and to get the results of effectiveness analysis using
different screen sizes, test results are used. [5], [6].

The electroencephalogram itself is a device used to record
electrical activity in the brain, where by using standard sensors
found on the EEG device, researchers can record several
waves such as Alpha, Beta, Delta and Theta. Each brain wave
produced will be calculated to be able to draw conclusions
about how much concentration of students is when carrying
out online learning using different devices. The importance of
this research is because, in its application, online learning
requires students to always be on screen time during the
learning process, where the length of the learning process
cannot be said to run in a short time. The average learning
process carried out for each session in a university
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environment is 45 minutes. The question that arises from the
example case is whether students are still focused on receiving
online learning at that time.

Previous case studies between human and computer
interactions observed based on brain waves have actually been
carried out, and these brain waves have become a commonly
used parameter to detect the dynamics of interactions that
occur [7], although on several occasions, it has been proven
that brain wave parameters tend to be more stable and stable.
Of its reliability or can be said to be more tested than other
biological parameters. Brain waves are a test parameter that is
often used in defence-based research [8], research in the
advertising branch of science and research in psychology and
psychology. In the early stages of this research, the students
will record brain wave signals while learning using
smartphones and laptops. The brain wave signals obtained in
the early stages will be in the form of band powers. Later, the
power bands will be classified based on Alpha, Beta, Delta and
Theta signals. After successfully classified, the signal will be
normalized and processed to produce the attention value of
each student when using smartphones and laptops so that later
it will be able to compare how the students' attention differs
when carrying out online learning using the two devices. The
contribution that the author can give to the next research is that
it is hoped that with this research in the future, the education
provider can provide input to students or parents of students to
recommend learning devices, especially in terms of the type of
screen that is suitable for use to support the learning process so
that even though learning is carried out online, the focus of
students in transfer knowledge given can be maximized.

II. RELATED WORK

A. Related Research

Research related to the effectiveness of distance learning
via the internet has been done a lot [2]. However, when
compared to a large scale, this research model has not been
widely carried out [3] because this online learning paradigm
only jumped when the COVID-19 pandemic hit the world
since 2019 ago. Until now, research related to student learning
concentration has not been widely studied using brain wave
condition parameters, previous studies have mostly taken cases
in the form of qualitative studies from the side of students [2].
In this study, the authors tried to analyze the focus of students'
learning by observing brain waves using
Electroencephalography (EEG) devices. Many studies using
EEG have actually been carried out, but only a few have
touched on the world of education, research related to EEG
has mostly touched on the realm of fatigue [4], and the most
frequent causes of fatigue raised using EEG analysis are cases
of transportation fatigue [9], [10], [11], [12]. Based on the lack
of focus on student learning cases who were appointed by
conducting brain wave analysis, in this study, the researchers
wanted to see the effectiveness of the implementation of online
learning using the most frequently used tools for online
learning.

B.  Electroencephalography

The tool that can be used to read a person's brain waves is
an Electroencephalography (EEG) device [13], research using
EEG actually became popular in the era after the second world
war when it began to find indications that the human brain
emits small electrical impulses which can eventually be
captured and transmitted read to indicate certain biological
symptoms as well as biological activities such as muscle
movement and eye movement [14]. The domain that is often
detected using EEG is fatigue detection in transportation
research, where EEG as a device is used to read human brain
waves, study them and draw certain conclusions, as well as
make safety devices. In addition to the transportation field,
brain wave readings can also be used to see the amount of
meditation and concentration level for each user, where the
level is by formulating the main signal that the brain wave
reader can record. The standard signals that can be extracted
from the raw brain wave data produced are Alpha, Beta, Delta
and Theta signals [15].

Detta
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Fig. 1 Brainwave Signal
Source: Detecting Excessive Daytime Sleepiness with CNN and Commercial Grade EEG [15]

Based on Figure 1 above, each frequency of the resulting
signal has a different meaning, so it is essential to classify the
resulting frequency so that no wrong conclusions can be drawn
to determine a person's condition, whether focused, asleep,
relaxed and normal.

III. METHOD

A. Research Design

In this study, the author focuses on measuring students'
attention levels when learning online using different devices.
To measure the attention level of students, in this study,
students were attached to a brain wave measuring device to
record the frequencies produced when participating in online
learning. At the final stage, this research is expected to be able
to produce a conclusion that states the differences in the focus
of students based on the devices used and can be input for
educational institutions to recommend devices that are suitable
for use in online learning because essentially online learning
requires students to always be online screen time while
following the lesson. The following is a research flow design
that was carried out to find gaps among users of online
learning tools. In this study, the authors used recorded data
from students brain waves who were doing online learning
using different devices, in this case used, smartphones and
laptops. The number of students brain waves used for
experimentation data is 25 students brain recording data. Each
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student will be given 15 minutes of learning material, and
students will be allowed to focus on following the learning
through a smartphone and then switch to using a laptop, but
even though the learning is carried out for 15 minutes, the
recorded brain wave data is only 5 minutes. This 5 minute
recording minimizes abnormal data at the beginning and the
end of the lesson. In this study, the age limit of students used
as the research object is 18 - 22 years.

Stream EEG
v ¥
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b W
Srartphone Study With Laptop
Raw Data EEG Raw Data EEG
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Fig. 2 Research Method
B.  EEG Signal Classification
The device wused to record brain waves is

Electroencephalography (EEG) globally, this device will
record all brain waves using sensors located on the front and
side of the device used. The results of the raw data recording
of the brain waves will later be classified into a delta, theta,
alpha, and beta signals.
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Fig. 3 EEG Signal Classification Process

This classification process begins by collecting all raw
data identified from the tool, and then the data will be entered
into the delta theta, alpha, and beta band signals. This
classification process uses a formula provided by
neurofeedback, where each time, the classification will
generate a unique signal and later, the signal can be formulated
into attention or relaxation. To measure the level of attention
in the study using the formulation provided by MUSE
neurofeedback, where the calculation used in the calculation of
the machine is to take the beta metric value taken by
comparing smooth band_powers [Band.Beta] and
smooth band powers [Band.Theta].

C. Preprocessing Signal EEG

One of the critical parts of this research is the retrieval of
brain wave data which undergoes two stages before the data is
finally ready to be entered into a classifier-based system.
Before being processed in the classifier, the data will be
normalized using the z-score normalization method with the
following equation [16].

7 = X—-X
SDy (1)

After experiencing the first normalization stage, the brain
waves will be processed again to get a sigma magnitude index
which is helpful for detecting data outliers so that the classifier
that will be made avoids local optimum or overfitting
problems. The amortization formula to be used in this study is
as follows [17].

N-1

SMA'—Z IX[H_”—X”
P )
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The normalized data must first have a threshold so that there is
no noise during processing. The determination of the threshold
or threshold in this study uses the following equation.

EEGThreshold ) = AVG(SMAs(x)) + STD(SMAs(x)) ®

The process carried out in the above formula is to determine
the threshold according to the context of the data carried out
where it is expected from the results of these calculations to
form brain wave data with the threshold used as a natural
evaluator as a comparison of individuals to the population.

D. Testing Scenario

The test scenario of this option begins with recording data
using an EEG device, and then the results of the raw data
recording will be classified so as to produce alpha, theta, beta
and delta signals. The classified brain wave signals will then
enter the preprocessing process using the z-score
normalization formula. The purpose of normalizing the z-score
is to facilitate the processing process that can truly distinguish
each signal needed to determine the attention level of students.
After all the signals are recorded correctly, a formulation will
be carried out to determine the level of students' attention by
comparing the beta signal, which should be greater than theta,
so it can be said that the student has concentration. As for the
number of users used in this experiment, there were 25
students. The student will be given the task of completing
online learning using two different supporting devices, namely
smartphones and laptops.

Fig. 4 Testing Using Smartphone

.

Fig. 5 Testing Using a Laptop

In this test scenario, students will be asked to take part in
online learning by answering questions that have been
provided using a smartphone application and an application on
a laptop for 15 minutes. Although online learning is carried out
for 15 minutes, the researcher will not record the first 5

minutes using the EEG tool because, in the first 5 minutes, the
researcher assumes that students are adapting to the given task
so that the brain wave data recorded in this study is 10 minutes
in the learning session online. The results of each user's brain
wave recordings will be compared when using laptops and
smartphones so that later results will be obtained in the form of
how big the difference in effectiveness is in maintaining the
attention level of students when participating in online
learning.

IV. RESULT AND DISCUSSION

A.  Brainwave Classification Results

The following are the results of the classification of brain
waves generated by implementing a formula in the python
programming language so that the system can break down raw
data into four signals that are needed to measure students
attention levels.

TABLE I
SAMPLE OF BRAIN WAVE SIGNAL CLASSIFICATION RESULT
EEG Signal Result
User

Alpha Theta Beta Delta
1 0.12 0.55 0.77 0.73
2 0.74 0.58 0.22 0.98
3 0.38 0.59 0.89 0.28
4 0.23 0.65 0.50 0.15
5 0.52 0.50 0.24 0.05
6 0.02 0.33 0.65 0.93
7 0.30 0.22 0.94 0.78
8 0.01 0.68 0.25 0.10
9 0.41 0.05 0.36 0.85
10 0.25 0.99 0.29 0.43
11 0.07 0.02 0.25 0.58
12 0.06 0.28 0.21 0.49
13 0.42 0.99 0.80 0.53
14 0.84 0.21 0.37 0.93
15 0.61 0.26 0.63 0.29
16 0.57 0.07 0.42 0.51
17 0.77 0.78 0.81 0.99
18 0.30 0.52 0.56 0.30
19 0.16 0.78 0.94 0.93
20 1.00 0.39 0.11 0.75
21 0.73 0.61 0.20 0.10
22 0.96 0.83 0.48 0.15
23 0.44 0.39 0.86 0.54
24 0.91 0.75 0.58 0.57
25 0.17 0.31 0.25 0.92

Table 1 is an example of brain wave recordings that have been
carried out in this study, which in this study specifically took
alpha, theta, beta and delta signals because by getting these
signals, researchers could analyze students attention levels.
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TABLE II

AVERAGE OF BRAIN WAVE SIGNAL CLASSIFICATION RESULT

. Average Signal Number of
EEG Signal Result User
Alpha 0.55 25
Theta 0.46 25
Beta 0.58 25
Delta 0.41 25

Based on the results of data recording 25 students, table 2
shows the average results of recording the four types of brain
wave data, where beta and alpha signals have the highest
average value when someone still online learning.

B.  Test Results on Smartphones and Laptops

The following is the result of calculating the attention
level of students when using two different devices where the
results of this attention level are obtained from recording for
ten minutes, and the results shown in the following table are

the average values of the 10 minutes recording.
TABLE 1II
SAMPLE OF ATTENTION LEVEL TEST RESULT

Attention Level
User
Use Laptop (%) Use Smartphone (%)
1 63 61
2 60 50
3 56 45
4 65 51
5 58 42
6 57 52
7 61 54
8 51 54
9 70 62
10 59 54
11 67 60
12 64 61
13 65 60
14 67 65
15 62 56
16 52 60
17 59 40
18 68 68
19 60 58
20 60 52
21 63 53
22 70 50

Attention Level
User
Use Laptop (%) Use Smartphone (%)
23 63 50
24 50 45
25 50 65

Table 3 is the result of the attention level of 25 students when
using two different devices in this research use laptops and
smartphones. If you see at a glance, there are slight differences
in attention levels when using laptops and smartphones, and to
see the differences in depth, it can be analyzed by looking at
the average of all number of study members.

TABLE IV
AVERAGE OF ATTENTION LEVEL TEST RESULT

No Device Average Attention | Number of
Level (%) User
1 Laptop 60.80 25
2 | Smartphone 54,72 25

Based on table 4, it can be seen that the students attention level
value when using a laptop has a higher value than using a
smartphone. Based on the data presented in table 4, the
attention level when learning to use a laptop has a higher value
of 5.76% compared to a smartphone device.

C. Analysis Results

Based on the tests that have been carried out, the
developed system has been able to classify raw brain wave
data into signals or frequencies needed for formulating
attention level calculations.

Average Brainwave Signal

0.60

055 0.58

o 0.50 0.46
i} 0.41
2 040

0
»n 0.20

0.10

0.00

Alpha Theta Beta Delta

E

w
5]

gnal Ban

Type of Signal EEG

Fig. 6 EEG Signal Classification Graph

In addition to classifying the developed system, it has also
been able to normalize brain wave signals using the z-score
formulation, where the normalization results will undoubtedly
make it easier for researchers to filter out which signals are
used for calculating the extension level. The following is a
graph of what happens when students do online learning using
smartphones and laptops.
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Fig. 7 Graph of Learning Device Comparison Results

Based on the graph that has been presented, it can be seen that
there is not a big gap when online learning is carried out using
a smartphone or laptop, but if taken on average, online
learning using a laptop has a higher attention level value than
using a smartphone, although not too much significant. This
insignificant result may be generated because the activity is
only carried out for 15 minutes. Of course, it will produce
different values when analyzing brain wave data with a longer
duration in the future. In general, the author can conclude that
using a laptop will be more effective in maintaining the
attention level of students in participating in online lessons
based on level test results generated from students' brain
waves.

V. CONCLUSION

The conclusion obtained from this study is that the use of
the classification method provided by neurofeedback is able to
divide the raw data into a delta, theta, alpha, and beta signals.
Based on the results of tests carried out using two different
devices, it can be concluded that there is no gap that is too
high when students use laptops or smartphones in participating
in online learning, which is carried out for a duration of 15
minutes but in general, the attention level value when using a
laptop has a high value higher than using a smartphone, which
has a difference of 5.76% where the attention level of students
will be higher when using a laptop device, 60.80% for laptops
and 54.72% for smartphones conducted by observing students
with an age range of 18-22 years. In its application, the tools
used in this study are still focused on brain wave recording
devices, in the future the sensors on this device can be
implanted in the headset so that the tools used can also have
other functions other than only being used to record brain
waves and may look quite disturbing if only has one function.
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Abstract—The COVID-19 pandemic has given rise to a
different learning paradigm than before, from offline learning to
online learning. This paradigm is, of course, still popularly used
today even until the pandemic ends in the future. The learning
paradigm in question is the online learning method. Online
learning method not only provides convenience for students or
educators but also creates problems that are very interesting to
observe. One of the variables that become a problem in this
learning method is the students' level of focus in online learning
because online learning requires a lengthy screen time, and
students use different devices. In this study, we will analyze the
level of focus of students participating in online learning using
smartphones and laptops. The problem with online learning is the
different focus conditions due to differences in the use of devices,
affecting the delivery of material received by students. The age
limit of students used as the research object is 18-20 years. The
approach used to analyze this problem is measure the level of
focus using a brain wave recorder Electroencephalogram (EEG).
As many as 25 students will observe their level of focus when
participating in online learning using laptops and smartphones.
Based on research conducted, the focus level of students using
smartphone devices has an attention level of 54.72% and laptops
by 60.80%. Laptop use has a higher level of attention by 5.76%
than smartphone use.

Keywords—Student Focus, Attention Level, Post Pandemic
Education, Elektroensefalogram (EEG), Brainwave.

I. INTRODUCTION

The COVID-19 pandemic from the end of 2019 wuntil now
has not ended, new variants of this virus keep popping up,
which causes people to have to get used to the new habits that
are present today both in the education sector, work, and other
sectors. During the early days of the pandemic, all teaching
and learning processes were abolished to limit the spread of
this virus, and after a while the idea enffiged to organize
online education. This idea is stated in the decree of the
Minister of Education Number 4 of 2020 which requires
online learning for Indonesian higher education [1]. To

1
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overcome the paradigm during the pandemic, schools use
online learning methods to make Eldents still able to study
comfortably without fear of being exposed to the COVID-19
virus. This online learning method is certainly many questions
for academics, both in terms of the seriousness of students,
interactions and the effectiveness of this learning method.
Although research on the effectiveness of distance learning via
the internet has been widely carried out [2], not much has been
done on a large scale like this [3], not only in terms of
education but also because many previous studies have been
conducted in the health sector, especially in the field of eye
and eye health ergonomics [4]. The variety of tools used in
online learning is a very interesting research topic to observe,
judging from previous research Bt took the case of students'
eye health and ergonomics in the implementation of online
learning, in this study, observations will be made regarding
how students concentrate when doing online learning using
tools, the most frequently used are smartphones and laptops
based on  brain wave  observations using an
electroencephalogram (EEG). Research that compares the
effectiveness of screen sizes in online learning has been
conducted but has not touched the realm of analysis using
EEG, where the research topic is still in the realm of learning
methods and to get the results of effectiveness analysis using
different screen sizes, test results are used. [5], [6].

The electroencephalogram itself is a device used to record
electrical activity in the brain, where by using standard sensors
found on the EEG device, researchers can record several
waves such as Alpha, Beta, Delta and Theta. Each brain wave
produced will be calculated to be able to draw conclusions
about how much concentration of students is when carrying
out online learning using different devices. The importance of
this research is because, in its application, online learning
requires students to always be on screen time during the
learning process, where the length of the learning process
cannot be said to run in a short time. The average learning
process carried out for each session in a university




environment is 45 minutes. The question that arises from the
example case is whether students are still focused on receiving
online learning at that time.

Previous case studies between human and computer
interactions observed based on brain waves have actually been
carried out, and these brain waves have become a commonly
used parameter to detect the dynamics of interactions that
occur [7], although on several occasions, it has been proven
that brain wave parameters tend to be more stable and stable.
Of its reliability or can be said to be more tested than other
biological parameters. Brain waves are a test parameter that is
often used in defence-based research [8], research in the
advertising branch of science and research in psychology and
psychology. In the early stages of this research, the students
will record brain wave signals while learning using
smartphones and laptops. The brain wave signals obtained in
the early stages will be in the form of band powers. Later, the
power bands will be classified based on Alpha, Beta, Delta and
Theta signals. After successfully classified, the signal will be
normalized and processed to produce the attention value of
each student when using smartphones and laptops so that later
it will be able to compare how the students' attention differs
when carrying out online learning using the two devices. The
contribution that the author can give to the next research is that
it is hoped that with this research in the future, the education
provider can provide input to students or parents of students to
recommend learning devices, especially in terms of the type of
screen that is suitable for use to support the learning process so
that even though learning is carried out online, the focus of
students in transfer knowledge given can be maximized.

II. RELATED WORK

A.  Related Research

Research related to the effectiveness of distance learning
via the internet has been done a lot [2]. However, when
compared to a large scale, this research model has not been
widely carried out [3] because this online learning paradigm
only jumped when the COVID-19 pandemic hit the world
since 2019 ago. Until now, research related to student learning
concentration has not been widely studied using brain wave
condition parameters, previous studies have mostly taken cases
in the form of qualitative studies from the side of students [2].
In this study, the authors tried to analyze the focus of students'
learning by observing brain waves using
Electroencephalography (EEG) devices. Many studies using
EEG have actually been carried out, but only a few have
touched on the world of education, research related to EEG
has mostly touched on the realm of fatigue [4], and the most
frequent causes of fatigue raised using EEG analysis are cases
of transportation fatigue [9], [10], [11], [12]. Based on the lack
of focus on student learning cases who were appointed by
conducting bifh wave analysis, in this study, the researchers
wanted to see the effectiveness of the implementation of online
learning using the most frequently used tools for online
learning.
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B. Electroencephalography

The tool that can be used to read a person's brain waves is
an Electroencephalography (EEG) device [13], research using
EEG actually became popular in the era after the second world
war when it began to find indications that the human brain
emits small electrical impulses which can eventually be
captured and transmitted read to indicate certain biological
symptoms as well as biological activities such as muscle
movement and eye movement [14]. The domain that is often
detected using EEG is fatigue detection in transportation
research, where EEG as a device is used to read human brain
waves, study them and draw certain conclusions, as well as
make safety devices. In addition to the transportation field,
brain wave readings can also be used to see the amount of
meditation and concentration level for each user, where the
level is by formulating the main signal that the brain wave
reader can record. The standard signals that can be extracted
from the raw brain wave data produced are Alpha, Beta, Delta
and Theta signals [15].
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Fig. 1 Brainwave Signal
Source: Detecting Excessive Daytime Sleepiness with CNN and Commercial Grade EEG [15]

Based on Figure 1 above, each frequency of the resulting
signal has a different meaning, so it is essential to classify the
resulting frequency so that no wrong conclusions can be drawn
to determine a person's condition, whether focused, asleep,
relaxed and normal.

III. METHOD

A.  Research Design

In this study, the author focuses on measuring students'
attention levels when learning online using different devices.
To measure the attention level of students, in this study,
students were attached to a brain wave measuring device to
record the frequencies prodgded when participating in online
learning. At the final stage, this research is expected to be able
to produce a conclusion that states the differences in the focus
of students based on the devices used and can be input for
educational institutions to recommend devices that are suitable
for use in online learning because essentially online learning
requires students to always be online screen time while
following the lesson. The following is a research flow design
that was carried out to find gaps among users of online
learning tools. In this study, the authors used recorded data
from students brain waves who were doing online learning
using different devices, in this case used, smartphones and
laptops. The number of students brain waves used for
experimentation data is 25 students brain recording data. Each




student will be given 15 minutes of learning material, and
students will be allowed to focus on following the learning
through a smartphone and then switch to using a laptop, but
even though the learning is carried out for 15 minutes, the
recorded brain wave data is only 5 minutes. This 5 minute
recording minimizes abnormal data at the beginning and the
end of the lesson. In this study, the age limit of students used
as the research object is 18 - 22 years.
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Fig. 2 Research Method
B.  EEG Signal Classification
The device wused to vrecord brain waves is

Electroencephalography (EEG) globally, this device will
record all brain waves using sensors located on the front and
side of the device used. The results of the raw data recording
of the brain waves will later be classified into a delta, theta,
alpha, and beta signals.
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This classification process begins by collecting all raw
data identified from the tool, and then the data will be entered
into the delta theta, alpha, and beta band signals. This
classification process uses a formula provided by
neurofeedback., where each time, the classification will
generate a unique signal and later, the signal can be formulated
into attention or relaxation. To measure the level of attention
in the study using the formulation provided by MUSE
neurofeedback, where the calculation used in the calculation of
the machine {Jto take the beta metric value taken by
comparing smooth_band powers [Band.Beta] and
smooth band powers [Band. Theta].

C. Preprocessing Signal EEG

One of the critical parts of this research is the retrieval of
brain wave data which undergoes two stages before the data is
finally ready to be entered into a classifier-based system.
Before being processed in the classifier, the data will be
normalized using the z-score normalization method with the
following equation [16].

X-X

Z =

SDy (1

After experiencing the first normalization stage, the brain
waves will be processed again to get a sigma magnitude index
which is helpful for detecting data outliers so that the classifier
that will be made avoids local optimum or overfitting
problems. The amortization formula to be used in this study 1s
as follows [17].

N-1
SMA = Z | Xpiery — X |
i=1 (2)




The normalized data must first have a threshold so that there is
no noise during processing. The determination of the threshold
or threshold in this study uses the following equation.

EECHIreshofd(x] =AVG(SMAS(X)}+STD(SMAS{X]) 3)

The process carried out in the above formula is to determine
the threshold according to the context of the data carried out
where it is expected from the results of these calculations to
form brain wave data with the threshold used as a natural
evaluator as a comparison of individuals to the population.

D. Testing Scenario

The test scenario of this option begins with recording data
using an EEG device, and then the results of the raw data
recording will be classified so as to produce alpha, theta, beta
and delta signals. The classified brain wave signals will then
enter the preprocessing process using the z-score
normalization formula. The purpose of normalizing the z-score
is to facilitate the processing process that can truly distinguish
each signal needed to determine the attention level of students.
After all the signals are recorded correctly, a formulation will
be carried out to determine the level of students' attention by
comparing the beta signal, which should be greater than theta,
so it can be said that the student has concentration. As for the
number of users used in this experiment, there were 25
students. The student will be given the task of completing
online learning using two different supporting devices, namely
smartphones and laptops.

Fig. 4 Testing Using Smartphone

Fig. 5 Testing Using a Laptop

In this test scenario, students will be asked to take part in
online learning by answering questions that have been
provided using a smartphone application and an application on
a laptop for 15 minutes. Although online learning is carried out
for 15 minutes, the researcher will not record the first 5
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minutes using the EEG tool because, in the first 5 minutes, the
researcher assumes that students are adapting to the given task
50 that the brain wave data recorded in this study is 10 minutes
in the learning session online. The results of each user's brain
wave recordings will be compared when using laptops and
smartphones so that later results will be obtained in the form of
how big the difference in effectiveness is in maintaining the
attention level of students when participating in online
learning.

IV. RESULT AND DISCUSSION

A.  Brainwave Classification Results

The following are the results of the classification of brain
waves generated by implementing a formula in the python
programming language so that the system can break down raw
data into four signals that are needed to measure students

attention levels.
TABLE 1
SAMPLE OF BRAIN WAVE SIGNAL CLASSIFICATION RESULT

o EEG Signal Result
Alpha Theta Beta Delta
1 0.12 0.55 0.77 0.73
2 0.74 0.58 0.22 0.98
3 0.38 0.59 0.89 0.28
4 0.23 0.65 0.50 0.15
5 0.52 0.50 0.24 0.05
6 0.02 0.33 0.65 0.93
7 0.30 0.22 0.94 0.78
8 0.01 0.68 0.25 0.10
9 0.41 0.05 0.36 0.85
10 0.25 0.99 0.29 043
11 0.07 0.02 0.25 0.58
12 0.06 0.28 0.21 0.49
13 0.42 0.99 0.80 0.53
14 0.84 0.21 0.37 0.93
15 0.61 0.26 0.63 0.29
16 0.57 0.07 0.42 0.51
17 0.77 0.78 0.81 0.99
18 0.30 0.52 0.56 0.30
19 0.16 0.78 0.94 0.93
20 1.00 0.39 0.11 0.75
21 0.73 0.61 0.20 0.10
22 0.96 0.83 048 0.15
23 0.44 0.39 0.86 0.54
24 0.91 0.75 0.58 0.57
25 0.17 0.31 0.25 0.92

Table 1 is an example of brain wave recordings that have been
carried out in this study, which in this study specifically took
alpha, theta, beta and delta signals because by getting these
signals, researchers could analyze students attention levels.




TABLED
AVERAGE OF BRAIN WAVE SIGNAL CLASSIFICATION RESULT

i Average Signal Number of
HEG Signal Result User
Alpha 0.55 25
Theta 0.46 25
Beta 0.58 25
Delta 0.41 25

Based on the results of data recording 25 students, table 2
shows the average results of recording the four types of brain
wave data, where beta and alpha signals have the highest
average value when someone still online learning.

B.  Test Results on Smartphones and Laptops

The following is the result of calculating the attention
level of students when using two different devices where the
results of thifZlttention level are obtained from recording for
ten minutes, and the results shown in the following table are

the average values of the 10 minutes recording.
TABLE 111
SAMPLE OF ATTENTION LEVEL TEST RESULT

Attention Level
User
Use Laptop (%) Use Smartphone (%)
1 63 61
2 ] 50
3 36 43
4 65 5l
5 58 42
B 57 52
7 61 34
8 5l 54
] 70 62
10 59 54
11 67 60
12 o4 6l
13 63 60
14 67 63
15 62 36
6 52 60
17 59 40
18 68 68
19 ] 58
20 ] 52
21 63 53
22 70 50
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Attention Level
User
Use Laptop (%) Use Smartphone (%)
23 63 50
24 50 45
25 50 63

Table 3 is the result of the attention level of 25 students when
using two different devices in this research use laptops and
smartphones. If you see at a glance, there are slight differences
in attention levels when using laptops and smartphones, and to
see the differences in depth, it can be analyzed by looking at

the average of all number of study members.
TABLE IV
AVERAGE OF ATTENTION LEVEL TEST RESULT

No Device Average Attention | Number of
Level (%) User
1 Laptop 60.80 25
2 Smartphone 54,72 25

Based on table 4, it can be seen that the students attention level
value when using a laptop has a higher value than using a
smartphone. Based on the data presented in table 4, the
attention level when learning to use a laptop has a higher value
of 5.76% compared to a smartphone device.

C.  Analysis Results

Based on the tests that have been carried out, the
developed system has been able to classify raw brain wave
data into signals or frequencies needed for formulating
attention level calculations.

Average Brainwave Signal

058

0.46
a1
- I I
o.o0
Alpha Theta Deiti

Type of Signal EEG

Fig. 6 EEG Signal Classification Graph

In addition to classifying the developed system, it has also
been able to normalize brain wave signals using the z-score
formulation, where the normalization results will undoubtedly
make it easier for researchers to filter out which signals are
used for calculating the extension level. The following is a
graph of what happens when students do online learning using
smartphones and laptops.




Atention Level User

BOE

54.72

51 .

Device

Fig. 7 Graph of Leaming Device Comparison Results

Based on the graph that has been presented, it can be seen that
there is not a big gap when online learning is carried out using
a smartphone or laptop, but if taken on average, online
learning using a laptop has a higher attention level value than
using a smartphone, although not too much significant. This
insignificant result may be generated because the activity is
only carried out for 15 minutes. Of course, it will produce
different values when analyzing brain wave data with a longer
duration in the future. In general, the author can conclude that
using a laptop will be more effective in maintaining the
attention level of students in participating in online lessons
based on level test results generated from students' brain
waves.

V. CONCLUSION

The conclusion obtained from this study is that the use of
the classification method provided by neurofeedback is able to
divide the raw data into a delta, theta, alpha, and beta signals.
Based on the results of tests carried out using two different
devices, it can be concluded that there is no gap that is too
high when students use laptops or smartphones in participating
in online learning, which is carried out for a duration of 15
minutes but in general, the attention level value when using a
laptop has a high value higher than using a smartphone. which
has a difference of 5.76% where the attention level of students
will be higher when using a laptop device, 60.80% for laptops
and 54.72% for smartphones conducted by observing students
with an age range of 18-22 years. In its application, the tools
used in this study are still focused on brain wave recording
devices, in the future the sensors on this device can be
implanted in the headset so that the tools used can also have
other functions other than only being used to record brain
waves and may look quite disturbing if only has one function.
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