

2021 International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS)

CONFERENCE PROCEEDINGS

**Advancing Smart and Green
Technologies Toward Society 5.0**

**28 - 30 October 2021
Bali, Indonesia**

Organized by :

Department of Electrical Engineering,
Postgraduate Study in Electrical Engineering
Faculty of Engineering
Udayana University

ORGANIZING COMMITTEE

- **General Chair:**
W. G. Ariastina
- **Co-Chair:**
I N. S. Kumara
K. O. Saputra
- **General Secretary:**
N. M. A. E. D. Wirastuti
- **Finance and Sponsorships:**
I. N. Setiawan
W. Sukerayasa
- **Publicity:**
D. C. Khrisne
N. P. Sastra
- **Publications and Conference Management Systems:**
I M. A. Suyadnya
D. M. Wiharta
- **Local Arrangement:**
G. Sukadarmika
I G. A. K. Diafari Djuni H.
- **Special Sessions:**
I. B. G. Manuaba
Y. Divayana

TABLE OF CONTENTS

Copyright Page.....	i
Welcome Message	ii
International Advisory Board	iii
Organizing Committee.....	iv
Technical Program Committee	v
Table of Contents.....	vi
Three-phase Four-leg Inverter LC Filter Using FCS MPC.....	1
<i>Asep Andang, Trio Adi Pamungkas, Nundang Busaeri, Rukmi Sari Hartati, Ida Bagus Gede Manuaba, I Nyoman Satya Kumara</i>	
BLDC Motor Control using a Complex Programmable Logic Device with Hall-Sensors.....	7
<i>Muhammad Fajri Sachruddin, Faizal Arya Samman, Rhiza S. Sadjad</i>	
The Development of Laboratory-Scale Oscillating Water Column OWC Test Rig with Real-Time Data Monitoring System.....	12
<i>Nurul Hiron, Ida Ayu Dwi Giriantari, Lie Jasa, I Nyoman Satya Kumara</i>	
Palmprint Identification using SVM and CNN Method	18
<i>Ayu Wirdiani, Darma Putra, Made Sudarma, Rukmi Sari Hartati</i>	
Improvement efficiency of photovoltaic system using modified perturb and observe....	24
<i>Ratna Ika Putri, Ferdian Ronilaya, Ika Noer Syamsiana, Lie Jasa</i>	
Performance analysis of artificial leg robot movement with PID control	29
<i>W. Widhiada, I.K.A. Admika, I.G.P.A. Suryawan</i>	
The E3A Framework: Assessment Of Energy Availability, Accessibility & Acceptability at the Provincial Level in Indonesia	35
<i>Maria Retnanestri, Hugh Outhred</i>	
DC-AC Inverter 220-230 VAC for Home Scale Photovoltaic Systems	41
<i>Faizal Arya Samman, Muhammad Aswan, Andi Ejah Umraeni Salam</i>	
EEG Study of Dasa Aksara Yoga and Improved Focus on Distance Learning Student	47
<i>I Putu Agus Eka Darma Udayana, Made Sudarma, I Ketut Gede Darma Putra, I Made Sukarsa</i>	
Design and Control System of Sluice Gate With Web-Based Information	52
<i>I Gusti Made Ngurah Desnanjaya, I Made Aditya Nugraha</i>	
Domain Concept of E-Government Evaluation Framework in Indonesian Local Government	58
<i>Moh Hidayat Koniyo, Ida Ayu Dwi Giriantari, Made Sudarma, N. M. A. E. D. Wirastuti</i>	

Determination of Effective Radio Frequency Monitoring Locations Using Fuzzy-Analytical Hierarchy Process	63
<i>Gede Eka Cahyadi, Gede Sukadarmika, Yoga Divayana, Nyoman Putra Sastra</i>	
Clustering of Earthquake and Volcanic Eruption Trauma Survivor Groups using K-Means Algorithm	69
<i>Sri Widyanti Ginting, Rukmi Sari Hartati, Made Sudarma, Ida Bagus Alit Swamardika</i>	
Quality of Service in Internet Network Based on Different Distances from Access Point	74
<i>Noveri Lysbetti Marpaung, Era Yohana Oktaviani Silalahi</i>	
Carrier Based PWM Methods of Dual Cascaded Inverter for Solar Power Plant Solid State Transformer.....	80
<i>I Nyoman Wahyu Satiawan, Ida Bagus Fery Citarsa, I Made Budi Suksmadana, Pravat Kumar Ray</i>	
SWOT Analysis for Biodiesel Utilization for Diesel Power Plants in Indonesia.....	86
<i>Mujammil Asdhiyoga Rahmanta, Rinaldy Dalimi</i>	
Dielectric Dissipation Factor Measurement of Power Equipment under Distorted Excitation Voltage.....	91
<i>Pratic A Muntakim, Junyang Zhang, Shubin Zhang, B.T. Phung</i>	
Simulation of Signal Propagation Channel 802.11n in Indoor Condition from Direct Measurement	96
<i>Made Sutha Yadnya, I Wayan Sudiarta, I Gede Wedashwara Wedarama</i>	
Modeling and Power Management of Electric Vehicle Charging System	100
<i>Pravat Kumar Ray, Anindya Bharatee, Samarpita Panda, I Nyoman Wahyu Satiawan</i>	
Green Campus Establishment Through Carbon Emission and Energy Efficiency Control	106
<i>Nundang Busaeri, Nurul Hiron, Ida Ayu Dwi Giriantari, Wayan Gede Ariastina, Ida Bagus Alit Swamardika</i>	
Condition Monitoring of Wind Turbine Gearbox Using Multidimensional Hybrid Outlier Detection	112
<i>Siyu Zhu, Zheng Qian, Bo Jing, Miaoquan Han, Zhengkai Huang, Fanghong Zhang</i>	
Novel Application of Heterogeneous Ensemble Learning in Fault Diagnosis of Photovoltaic Modules.....	118
<i>Jingyue Wang, Liliang Wang, Jiaqi Qu, Zheng Qian</i>	
Wind Turbine Condition Monitoring Based on Autoencoder and K-means	125
<i>Miaoquan Han, Zheng Qian, Bo Jing, Siyu Zhu, Fanghong Zhang</i>	
A fast and lightweight neural network for curve detection in structured-light vision sensing	130
<i>Congyang Zhao, Jianing Yang, Fuqiang Zhou, Xiaoyu Zhang, Liliang Wang, Zheng Qian</i>	

Design and Simulation of Log Periodic Dipole Array Antenna for 162 MHz AIS receiver	136
<i>I G A K Diafari D.H., I Made Oka Widyantara, D. M Wiharta, Putu Ardana, Nyoman Pramaita</i>	
A Study of Leakage Current Characteristic of Silicone Rubber Surface after Subjected to Ultraviolet Light	142
<i>Abdul Syakur, Jumrianto, Dassy Ariyanti, Munawar Agus Riyadi, Devi, Lusianna Silalahi, Wisnu Puji Rahayu</i>	
Preliminary Performance Evaluation of a 52.2 kWp Rooftop PV System in PT PLN Research Institute	146
<i>Agussalim Syamsuddin</i>	
Gamification Model in Scheduling and Attendance System of Traditional Village Activities.....	151
<i>NMAED Wirastuti, Komang Oka Saputra, Kadek Darmaastawan, Is-Haka Mkwawa</i>	
A Review on Swarm Intelligence Based Approach for Automatic Document Summarization	155
<i>I Made Widiartha, Rukmi Sari Hartati, Nyoman Putra Sastra, Dewa Made Wiharta</i>	
Impact of Covid-19 Pandemic on Electricity Consumption and Nighttime Lights Based on NPP-VIIRS DNB Image Products.....	161
<i>A.R. As-syakur, W.G. Ariastina, I N.S. Kumara, I M.O. Guna Antara, T. Osawa, D.A.N. Cahyani</i>	
Author Index	165

EEG Study of Dasa Aksara Yoga and Improved Focus on Distance Learning Student

I Putu Agus Eka Darma Udayana
Dept. of Engineering Science
Udayana University
 Denpasar, Indonesia
 agus.ekadarma@gmail.com

I Ketut Gede Darma Putra
Dept. of Information Technology
Udayana University
 Denpasar, Indonesia
 ikddarmaputra@unud.ac.id

Made Sudarma
Dept. of Electrical Engineering
Udayana, University
 Denpasar, Indonesia
 msudarma@unud.ac.id

I Made Sukarsa
Dept. of Information Technology
Udayana University
 Denpasar, Indonesia
 sukarsa@unud.ac.id

Abstract—The pandemic prevention measure of social distancing makes Indonesia higher Education system undergo a rapid transformation of distance learning. However, the sudden changes also come with its own unique problem. The effectiveness of online learning as a medium of study is an old debate among academia. The approach's effectiveness varies from field to field and from one experiment to another. One problem that seems consistent among the research is fluctuating attention among participants. This research explores the potential to use of an ancient Balinese breathing technique known as Dasa Aksara pranayama. This technique that combines the visualization technique and the breathing exercise has existed since the mid-nineteen century and was developed by Balinese monks. This research wants to gather the empirical evidence of the benefit of the technique using EEG monitoring and machine learning. We do a comparative study between the one group which is not receive the dasa aksara meditation treatment and another group which receive one. The end of the result concludes that the breathing technique succeeded to improve the attention level of the participant on average of 22.85% and the software is well received among the participant with the result of usability testing yield average point of 3.65 on a scale of 4.

Keywords—Dasa Aksara Yoga, Post Pandemic Education, EEG, Brainwave.

I. INTRODUCTION

Base on education decree number 4th 2020 issued by acting education minister Nadiem Makarim Indonesia Higher Education learning is forced to implement a full-fledged online curriculum for the entire year of 2020. However, a sudden transition from offline learning to full online learning in the post-pandemic Indonesia is not coming without problems. The over-reliance on a computer screen in a full-time class in a study conducted by [1], is associated with increased visual fatigue in university students. also the online learning process also put more strain on participant physical and mental states, like what has pointed in this study [2]. The famous research in Slovakia also confirms that the increased time you spent sitting and staring on a computer screen also increases the risk of back pain [3] and increased myopia that will become apparent after only a few months [4]. Not only on the physical states of things also the effect is apparent on mental of the participant as well as the prolonged duration of

computer screen staring is have been found to increase the stress level by 34.9%. From the educator perspective, similar research also conducted in Indonesia [5], which reported the comparison of online and offline learning effectiveness on student above primary level. However, according to study initiated by Bahasoan et al compared to traditional eye to eye learning the online learning effort still found a lot of problem for the student participating in it [6], the result is consistent even when we switch the subject changed across culture [7], not only Massive Open Online Course (MOOC) approach fall behind but also have been shown to be more demanding and put the student in lower attention span compared to offline teaching method [8]. The effort to fix the flaw of online learning has been a popular research object in recent decades, with gamification becoming the favorites approach to tackle this problem was initiated in 1993. This method is revised time and time again from Europe to Asia, this approach does not yet succeed in addressing the decrease attention level that commonly occurs in online/non-eye to eye contact learning [9], [10]. More spiritual approaches are taken by Nour Meidly [11] with the introduction of mantra before the learning session that has been associated by improved attention level but as the report using the subjective measure of attention is hard to replicate and evaluate. In other study Zi Yan and associates also doing similar objective approach but the decision of the research of not using any public data makes the study problematic [12]. To tackle this problem, we use EEG as the data constructor of our research as it has been the industry standard of interpreting the state of mind like what has been proven by Krigolson [13] or a similar study by Arijit Nandi [14] in 2017 and 2020 respectively. We tried to tackle the attention deficit problem and short attention window in online learning with Balinese traditional breathing method known as Dasa Aksara Pranayama [15], the same method already on a pilot study in the medical world to provide a pain reduction in pre endoscopic patient [16] and also used in pain management therapy on adolescent with Rheumatic Arthritis (RA) [17]. This breathing method is not yet explored enough to be utilized as a tool in education, is still less explored compared to Indian Pranayama [18], or Qi Gong Chinese Breathing Exercise that has been widely utilized in many subjects of research [19]. Elektroensefalogram (EEG) which is what we

used in this research is an electrophysiology apparatus to record electrical activities along with the scalp. This method is usually a non-invasive one to be placed around the skin, this method is considered versatile enough to be implemented in various research subjects. EEG worked to quantify the signal transmitted by the brain neuron [20]. The study will be situated in the small experimental settings with 20 participants which the brainwave data and mental state will be compared before and after doing the dasa aksara exercise. The brainwave would be analyzed using a deep-learning based classifier which has been pre-trained before to distinguish two mental state which confused-state and highly focused state

II. LITERATURES REVIEW

A. Dasa Aksara Pranayama

Dasa Aksara is a branching technique of Yoga that originated in the golden age of Bali, the scripture that contains the instruction of Yoga is the book of Aji Saraswati. The Yoga is deep-rooted from Balinese tantric tradition, which further proven the finding of the Yoga teaching in the Javano-Balinese texts derive, since recent research by Andrea Acri [21] indicates that the technique is more like having Shandika (Dravidian) origin for the technique rather than the non-dualist Kashmiri traditions that are usually associated with the *Kundalini Yoga* described by Padoux and others. Nevertheless, the *Dasa Aksara Yoga*, which has been dubbed 'Alphabet mysticism' by some Western scholars, are evidently grounded in very similar concepts concerning the nature of sound, speech, and the energy of early Sanskrit literature. It makes yoga unique compared to the more mainstream yoga technique from Indian tradition emphasizes doing a visual affirmation during the training, which makes the autofocus mechanism of the brain working more heavily rather than the muscle control or the balance control like other *vipassana* traditions. The visualization aspect of *Dasa Aksara Yoga* consists of:

TABLE I. DASA AKSARA YOGA

Phase	Components of Dasa Aksara Yoga		
	Balinese Chants	Alphabet	Visualization
1	Sa	S	Heart
2	Ba	B	Liver
3	Ta	T	Kidney
4	A	A	Bladder
5	I	I	Base Belly
6	Na	N	Lung
7	Ma	M	Scalp / Top of The Head
8	Si	S	Spleen
9	Wa	W	Chest Cavity
10	Ya	Y	Solar Plexus

Which when the breathing technique is performed the participant is on the rhythm of doing a simple breathing exercise consisting of four phase:

- Puraka : Inhalation
- Kumbhaka : Retention of health
- Rechaka : The exhalation of breath
- Shunyata : The focused exhalation air out

B. Elektroensefalogram (EEG)

Elektroensefalogram taken from two essential word electro means electrical signal and Fotograf, which mean brain recording or snapshotting.

Fig. 1. Different types of Brainwaves

In popular books, EEG is defined as an electrode-powered system that records potential currents around the scalp [22]. EEG is standardly used as an apparatus to detect emotion or any human intention. EEG signal usually consists of AgCl electrode and has been standardized by a standard known as 10-20 standard an EEG device commonly associated with a graph-figure output known as Electroencephalogram. Amplitude and frequency vary from device manufacturer to manufacturer; the result produced by this device is also very dependent on the subject whatever the subject is in a relaxed state or whatever the subject is idle or having activity. A lot of EEG signals then interpreted by the cycle that they produced a wave with 8-14 cycles per second is commonly known as alpha which can be recorded best in the occipital region.

C. Frequency Band EEG

Many researchers have successfully linked brain wave patterns with our brain's mental activity. Any EEG-related research usually starts working with raw EEG data and then categorized them into five known frequency labels known as Alpha wave, Beta wave, Delta wave, Theta, and Gamma wave. However, in many devices, only Alpha, Beta, Delta, and Theta are most widely used for EEG signal analysis or any brainwave-related study. It has been known for decades that our brain releases brainwaves when we do tasks for various cognitive functions. Moreover, can be divided again to 5 frequency band mentioned above only. Gamma frequency has been proven to be the predictor of information processing in our internal brain Beta waves, on the other hand primarily generated in the left hemisphere. That correlates to Decision-making, problem-solving, attentiveness. The increase of Beta brain activity correlates with higher energy consumption too. Alpha waves are quiet and opposite and have been known to be a biomarker or relaxed state of mind. Moreover, primarily generated in the brain's right hemisphere and has been associated with the production of hormones that decrease pain and cognitive stress. These frequency bands will be used as an indicator

when examining the student brainwave and to be a basis of concern when measuring the effectiveness of the procedures that we propose in this research.

III. METHOD

A. Designing of The System

The design process of *Dasa Aksara* software is shown in the figure below:

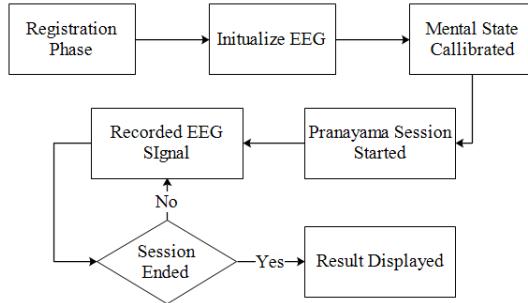


Fig. 2. Dasa Aksara Training Software Context Diagram

The software is initiated and you will be asked to put your credential that will be linked to the folder where your recording session result is stored and after that and will automatically checking if there is any EEG compatible device detected in the system if the device is detected our internal mental state recognition programs will start working and detecting your current mental state and will recommend the session interval depends on your predicted state and then our pranayama guidance voiceover will be started and your brainwave will start to be recorded and the system will display the diagram regarding your training result or any data that recorded before in display result page. Regarding the recognition system that we use is designed and developed per this specification in diagram shown below.

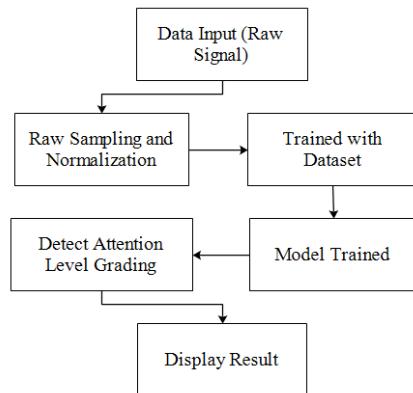


Fig. 3. Focus Recognition System Trained in The Dasa Aksara System

The process started when the device input takes the data is then feed straightforwardly to the preprocessing module when the data is trimmed using Min-Max normalization algorithm, and then the data is compared to the dataset and be trained to be fixated in a model for later use. This model will recognize two states in general, an unfocused state and a focused state. The model is then stored in an internal database for later use. Once the participant is using the program, the classifier will record and predict the participant's mental state at any given time, the participant will give it a scale and put it into a plotter when the plotter

will put the output into the graph that the user or expert can interpret.

Fig. 4. Neurosky Mindwave Used by Student

In this research we use cheap and affordable single band commercial EEG device from Neurosky as a objective apparatus that help evaluate the brainwave quality and improvement of the participant thus eliminating the need of self-assessment of attention level for each participant.

IV. RESULT AND DISCUSSION

A. Result

The result of the development is a guided self-breathing exercise programme is started with a login page which the participant can then use their username to enter the game. The entrance of the game is shown below.

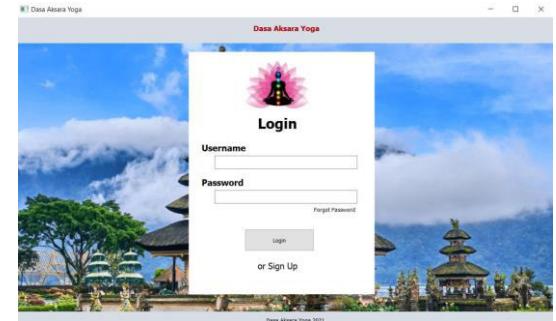


Fig. 5. Welcome Page of The System

The registered participant that have given credential thus having the access for both username and password and the credential clicked and validated by the system, meanwhile if the user is not registered they can click the registration link.

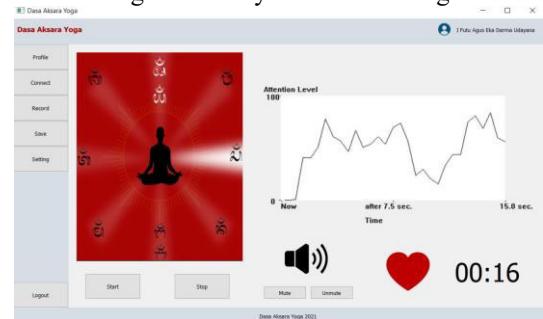


Fig. 6. Guided Dasa-aksara Training and Brainwave

Next you would be arrived at the main menu page which consist of "profile" which the user can see their profile and saved email address for data exporting. Second is a menu connect which user can check the connection of the device which as we mentioned above in need of registered EEG connection. Record when the functionality

of recording the data is triggered which will allow the system to record the real time brainwave data of the participant. “Save” the menu is when the EEG report provided by the system is delivered as text file. Setting is when the user decided the path file of the exported file and the length of guided meditation exercise. The main feature of the system is the guided meditation which composed of *Dasa Aksara* yoga breathing exercise which will be guided thru 2 phases of information provided either from sound and illustration of the visualization. Which would be highlighted as the process thru by the highlighter part of the system and then the right part of the system which contain the report and progress of the participant attention level which a user can be supervised also freely.

Fig. 7. Visualization Instruction and Guided Instruction

Table 2 is composed of the research result where the participant level of attention is compared side by side to the system administered.

TABLE II. RESULT OF INCREASE ATTENTION LEVEL

Person	Without Dasa Aksara		With Dasa Aksara		Increase Attention Level(%)
	Gamma Wave	Attention Level	Gamma Wave	Attention Level	
1	33228	56	43000	65	16.07
2	5293	40	18000	47	17.50
3	57243	47	62000	54	14.89
4	49960	47	58000	53	12.77
5	44790	47	57000	53	12.77
6	33782	44	60000	53	20.45
7	62938	44	67000	53	20.45
8	3266	43	9000	55	27.91
9	73756	40	88000	50	25.00
10	88000	43	93000	55	27.91
11	32551	47	57000	55	17.02
12	46799	51	62000	62	21.57
13	74875	53	82000	62	16.98
14	69203	48	77000	67	39.58
15	41013	45	58000	65	44.44
16	47860	55	62000	66	20.00
17	41013	57	67000	66	15.79
18	60378	54	68745	67	24.07
19	18901	57	32750	77	35.09
20	31559	60	37400	76	26.67
Average	45820.40	48.90	57944.75	60.05	22.85

In this table we can see that the increase of the attention level varies from participant to participant but one thing is consistent in this figure which the trend upwards both in gamma wave of the participant (which according to many consensus always correlates with the state of focus) but in average the participant when doing the *Dasa Aksara* pranayama regime before the online learning started and evaluated via single band EEG device.

B. Usability Testing

Usability testing in this study was conducted to measure how easy it is to use the interface of the system created. This test is done by giving several tasks or tasks to the user to interact with the tested system. This task was given to 20 respondents from STMIK STIKOM Indonesia students. After the user completes all the existing functions, the user then fills out the questionnaire distributed based on his experience when performing the task or tasks earlier. Each question in usability testing has represented every aspect described by Nielsen's Approach, where the parts are learnability, efficiency, memorability, errors, and satisfaction. Table 3 is the test results from usability testing:

TABLE III. THE RESULT OF USABILITY TESTING

No	Scoring Criteria	Average Score
1	<i>System Aspect (System)</i>	3.59
2	<i>User Aspect (User)</i>	3.73
3	<i>Aspects of Interaction (Interaction)</i>	3.63

Table 3 shows the value of user acceptance or user satisfaction on each aspect of the assessment on usability testing. It can be seen that all the attributes contained in the usability testing test have a satisfaction value above 3.00 and the average value of the usability testing test is 3.65 or in other words the results of user satisfaction with the applications offered are already at a satisfactory level.

C. Discussion

Limited test result on this little research shows the capacity of *Dasa Aksara* Pranayama to be treated as a breathing exercise to improve student attention level of distance learning participants in STMIK STIKOM Indonesia. Namely, the training increases the gamma waves quality in the participant and would be beneficial to be done before doing lessons. The 20 participants are doing the small test run we provided, reported a increase of focus after the session and with average of 22,85% after the session. The traditional methodology of the waterfall method is also found to be adequate to digitize Bali's cultural heritage since it is in the line of transformation ideas. Turns out for only providing small input namely sound and guided visualization with a little usability testing is also known that participant is having no difficulty doing the session with guided software. The addition of EEG as a countermeasure of participant subjectiveness and also as a real-time benchmark of the training is considered a novelty in Balinese youngsters, thus making the preservation of the *Dasa Aksara* pranayama

knowledge can be much easier to be scaled after the participant is put into sort of pseudo-competition during the session. This research's ultimate goal is to find a medium of traditional Balinese heritage for the Balinese younger generation which should be preserved in whatever measures necessary because of its necessity to be relevant to Balinese people in the digital era.

V. CONCLUSION

To overcome modern problems in the post-pandemic era of education in Bali, it turns out that ancient Balinese art can still be relevant. This ancient heritage and sport, when digitized into the form of Information and Communication Technologies (ICT) and combined with modern technology (EEG), proves to be something that appeals to young Balinese. Evidently, from the 20 participants who signed up to be included in the testing session, all participants experienced a 22.85% increase in the level of attention they felt. From the user's point of view, this application is felt wholeheartedly, with the results of usability testing producing an average score of 3.65 on a scale of 4.

ACKNOWLEDGMENT

The author would like to thank the STMIK STIKOM Indonesia for permission given to conduct the study and financial help provided for the doctoral study at Study Program of Engineering Science, Faculty of Engineering, Udayana University. The authors also thank the chairman of Study Program Engineering Science and the staff for the support and motivation given so that this paper can be presented in the conference.

REFERENCES

- [1] B. Surkhali and K. Garbuja, "Virtual Learning during COVID-19 Pandemic : Pros and Cons," *J. Lumbini Med. Coll.*, vol. 8, no. 1, pp. 19–20, 2020.
- [2] C. M. Morin, J. Carrier, C. Bastien, and R. Godbout, "Sleep and Circadian Rhythm In Response To The COVID-19 Pandemic," *Can. J. Public Heal.*, vol. 111, no. 5, pp. 654–657, 2020.
- [3] P. Prieto-gonz, M. Šutvajov, A. Les, and P. Bart, "Back Pain Prevalence , Intensity , and Associated Risk Factors among Female Teachers in Slovakia during the COVID-19 Pandemic : A Cross-Sectional Study," *Healthcare*, vol. 9, no. 7, p. 860, 2021.
- [4] J. Liu, B. Li, Q. Chen, and J. Dang, "Student health implications of school closures during the covid-19 pandemic: New evidence on the association of e-learning, outdoor exercise, and myopia," *Healthc.*, vol. 9, no. 5, 2021.
- [5] S. Singh, A. Saini, and T. Ahlawat, "Impact of online teaching on health of university students during Covid 19 pandemic crisis," *Pharma Innov. J.*, vol. 10, no. 4, p. 960, 2021.
- [6] A. N. Bahasoan, Wulan Ayuandiani, Muhammad Mukhram, and Aswar Rahmat, "Effectiveness of Online Learning In Pandemic Covid-19," *Int. J. Sci. Technol. Manag.*, vol. 1, no. 2, pp. 100–106, 2020.
- [7] S. Byun and R. E. Slavin, "Educational Responses to the COVID-19 Outbreak in South Korea," *SSRN Electron. J.*, 2020.
- [8] Y. Morsi, P. Maddireddy, and S. Diego, "Swaying Attention : A Software and Hardware Approach to Students Dozing Off During Online Learning," *Proc.*, vol. 1, no. 1, pp. 1–12, 2021.
- [9] A. N. Saleem, N. M. Noori, and F. Ozdamli, "Gamification Applications in E-learning: A Literature Review," *Technol. Knowl. Learn.*, no. January, 2021.
- [10] J. Wang and P. D. Antonenko, "Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning," *Comput. Human Behav.*, vol. 71, pp. 79–89, 2017.
- [11] N. Mheidly, M. Y. Fares, and J. Fares, "Coping With Stress and Burnout Associated With Telecommunication and Online Learning," *Front. Public Heal.*, vol. 8, no. November, 2020.
- [12] Z. Yan, "Self-assessment in the process of self-regulated learning and its relationship with academic achievement," *Assess. Eval. High. Educ.*, vol. 45, no. 2, pp. 224–238, 2020.
- [13] L. Yao, M. L. Chen, X. Sheng, N. Mrachacz-kersting, X. Zhu, and D. Farina, "Using Portable EEG to Assess Human Visual Attention," in *International Conference on Augmented Cognition*, 2017, vol. 10284, pp. 90–98.
- [14] A. Nandi, F. Xhafa, L. Subirats, and S. Fort, "Real-time emotion classification using eeg data stream in e-learning contexts," *Sensors*, vol. 21, no. 5, pp. 1–26, 2021.
- [15] M. Stephen, "The Dasaksara And Yoga In Bali," *J. Hindu Stud.*, vol. 7, no. 2, pp. 179–216, 2014.
- [16] L. A. Y. U. Ratih, "Pengaruh Yoga Pranayama Terhadap Kecemasan Pada Pasien Pra Endoscopy Di Rumah Sakit Balimed," *Sekolah Tinggi Ilmu Kesehatan Bina Usada Bali*, 2021.
- [17] N. Maulana, "Yoga Pranayama Dan Aromaterapi Sebagai Alternatif Penanggulangan Rheumatoid Arthritis Pada Lansia," *J. Peduli Masy.*, vol. 3, pp. 73–78, 2021.
- [18] Rakesh Sarwal, Rajinder Dhamija, Khushbu Jain, and Ishwar V. Basavaraddi, "Efficacy of Pranayama in Preventing COVID-19 in Exposed Healthcare Professionals: A Randomized Controlled Trial," *OSF*, no. April, p. 77000, 2019.
- [19] J. Wang *et al.*, "Liuqizjue qigong versus traditional breathing training for patients with post-stroke dysarthria complicated by abnormal respiratory control: Results of a single-center randomized controlled trial," *Clin. Rehabil.*, vol. 35, no. 7, pp. 999–1010, 2021.
- [20] D. Jing, D. Liu, S. Zhang, and Z. Guo, "Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment," *Int. J. Transp. Sci. Technol.*, vol. 9, no. 4, pp. 366–376, 2020.
- [21] A. Acri, *Modern hindu intellectuals and ancient texts: Reforming Šaiva Yoga in Bali*, vol. 169, no. 1. 2013.
- [22] W. O. Tatum, A. M. Husain, S. R. Benbadis, and P. W. Kaplan, *Handbook of EEG Interpretation*. 1386.

EEG Study of Dasa Aksara Yoga and Improved Focus on Distance Learning Student

by Made Sudarma

Submission date: 11-Jan-2022 09:12AM (UTC+0700)

Submission ID: 1739882685

File name: ICSGTESI_2021_after_convert_IEEE_PDF_eXpress.pdf (395.9K)

Word count: 3826

Character count: 19801

EEG Study of Dasa Aksara Yoga and Improved Focus on Distance Learning Student

1 Putu Agus Eka Darma Udayana
Dept. of Engineering Science
Udayana University
Denpasar, Indonesia
agus.ekadarma@gmail.com

2 Ketut Gede Darma Putra
Dept. of Information Technology
Udayana University
Denpasar, Indonesia
ikddarmaputra@unud.ac.id

3 Made Sudarma
Dept. of Electrical Engineering
Udayana, University
Denpasar, Indonesia
msudarma@unud.ac.id

4 I Made Sukarsa
Dept. of Information Technology
Udayana University
Denpasar, Indonesia
sukarsa@unud.ac.id

Abstract—The pandemic prevention measure of social distancing makes Indonesia higher Education system undergo a rapid transformation of distance learning. However, the sudden changes also come with its own unique problem. The effectiveness of online learning as a medium of study is an old debate among academia. The approach's effectiveness varies from field to field and from one experiment to another. One problem that seems consistent among the research is fluctuating attention among participants. This research explores the potential to use of an ancient Balinese breathing technique known as Dasa Aksara pranayama. This technique that combines the visualization technique and the breathing exercise has existed since the mid-nineteen century and was developed by Balinese monks. This research wants to gather the empirical evidence of the benefit of the technique using EEG monitoring and machine learning. We do a comparative study between the one group which is not receive the dasa aksara meditation treatment and another group which receive one. The end of the result concludes that the breathing technique succeeded to improve the attention level of the participant on average of 22.85% and the software is well received among the participant with the result of usability testing yield average point of 3.65 on a scale of 4.

Keywords—Dasa Aksara Yoga, Post Pandemic Education, EEG, Brainwave.

I. INTRODUCTION

Base on education decree number 4th 2020 issued by acting education minister Nadiem Makarim Indonesia Higher Education learning is forced to implement a full-fledged online curriculum for the entire year of 2020. However, a sudden transition from offline learning to full online learning in the post-pandemic Indonesia is not coming without problems. The over-reliance on a computer screen in a full-time class in a study conducted by [1], is associated with increased visual fatigue in university students, also the online learning process also put more strain on participant physical and mental states, like what has pointed in this study [2]. The famous research in Slovakia also confirms that the increased time you spent sitting and staring on a computer screen also increases the risk of back pain [3] and increased myopia that will become apparent after only a few months [4]. Not only on the physical states of thing also the effect is apparent on mental of the participant as well as the prolonged duration of

computer screen staring is have been found to increase the stress level by 34.9%. From the educator perspective, similar research also conducted in Indonesia [5], which reported the comparison of online and offline learning effectiveness on student above primary level. However, according to study initiated by Bahasoan et al compared to traditional eye to eye learning the online learning effort still found a lot of problem for the student participating in it [6], the result is consistent even when we switch the subject changed across culture [7], not only Massive Open Online Course (MOOC) approach fall behind but also have been shown to be more demanding and put the student in lower attention span compared to offline teaching method [8]. The effort to fix the flaws of online learning has been a popular research object in recent decades, with gamification becoming the favorites approach to tackle this problem was initiated in 1993. This method is revised time and time again from Europe to Asia, this approach does not yet succeed in addressing the decrease attention level that commonly occurs in online/non-eye to eye contact learning [9], [10]. More spiritual approaches are taken by Nour Meidly [11] with the introduction of mantra before the learning session that has been associated by improved attention level but as the report using the subjective measure of attention is hard to replicate and evaluate. In other study Zi Yan and associates also doing similar objective approach but the decision of the research of not using any public data makes the study problematic [12]. To tackle this problem, we use EEG as the data constructor of our research as it has been the industry standard of interpreting the state of mind like what has been proven by Krigolson [13] or a similar study by Arifit Nandi [14] in 2017 and 2020 respectively. We tried to tackle the attention deficit problem and short attention window in online learning with Balinese traditional breathing method known as Dasa Aksara Pranayama [15], the same method already on a pilot study in the medical world to provide a pain reduction in pre endoscopic patient [16] and also used in pain management therapy on adolescent with Rheumatic Arthritis (RA) [17]. This breathing method is not yet explored enough to be utilized as a tool in education, is still less explored compared to Indian Pranayama [18], or Qi Gong Chinese Breathing Exercise that has been widely utilized in many subjects of research [19]. Elektroensefalogram (EEG) which is what we

used in this research is an electrophysiology apparatus to record electrical activities along with the scalp. This method is usually a non-invasive one to be placed around the skin, this method is considered versatile enough to be implemented in various research subjects. EEG worked to quantify the signal transmitted by the brain neuron [20]. The study will be situated in the small experimental settings with 20 participants which the brainwave data and mental state will be compared before and after doing the dasa aksara exercise. The brainwave would be analyzed using a deep-learning based classifier which has been pre-trained before to distinguish two mental state which confused-state and highly focused state

II. LITERATURES REVIEW

A. Dasa Aksara Pranayama

Dasa Aksara is a branching technique of Yoga that originated in the golden age of Bali, the scripture that contains the instruction of Yoga is the book of Aji Saraswati. The Yoga is deep-rooted from Balinese tantric tradition, which **1** further proven the finding of the Yoga teaching in the Javano-Balinese texts derive, since recent research by Andrea Acri [21] indicates that the technique is more like **1** having Shandika (Dravidian) origin for the technique rather than the non-dualist Kashmiri traditions that are usually associated with the *Kundalini Yoga* described by Padoux and others. Nevertheless, the *Dasa Aksara Yoga*, which has been dubbed 'Alphabet mysticism' by some Western scholars, are evidently grounded in very similar concepts concerning the nature of sound, speech, and the energy of early Sanskrit literature. It makes yoga unique compared to the more mainstream yoga technique from Indian tradition emphasizes doing a visual affirmation during the training, which makes the autofocus mechanism of the brain working more heavily rather than the muscle control or the balance control like other *vipassana* traditions. The visualization aspect of *Dasa Aksara Yoga* consists of:

TABLE I. DASA AKSARA YOGA

Phase	Components of Dasa Aksara Yoga		
	Balinese Chants	Alphabet	Visualization
1	Sa	S	Heart
2	Ba	B	Liver
3	Ta	T	Kidney
4	A	A	Bladder
5	I	I	Base Belly
6	Na	N	Lung
7	Ma	M	Scalp / Top of The Head
8	Si	S	Spleen
9	Wa	W	Chest Cavity
10	Ya	Y	Solar Plexus

Which when the breathing technique is performed the participant is on the rhythm of doing a simple breathing exercise consisting of four phase:

- Puraka : Inhalation
- Kumbhaka : Retention of health
- Rechaka : The exhalation of breath
- Shunya : The focused exhalation air out

B. Elektroensefalogram (EEG)

Elektroensefalogram taken from two essential word electro means electrical signal and Fotograf, which mean brain recording or snapshotting.

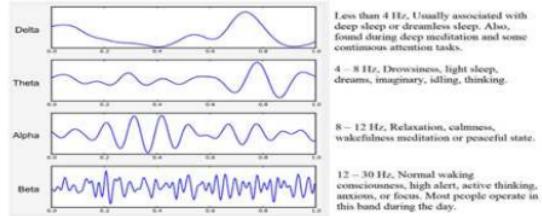


Fig. 1. Different types of Brainwaves

In popular books, EEG is defined as an electrode-powered system that records potential currents around the scalp [22]. EEG is standardly used as an apparatus to detect emotion or any human intention. EEG signal usually consists of AgCl electrode and has been standardized by a standard known as 10-20 standard an EEG device commonly associated with a graph-figure output known as Electroencephalogram. Amplitude and frequency vary from device manufacturer to manufacturer; the result produced by this device is also very dependent on the subject whatever the subject is in a relaxed state or whatever the subject is idle or having activity. A lot of EEG signals then interpreted by the cycle that they produced a wave with 8-14 cycles per second is commonly known as alpha which can be recorded best in the occipital region.

C. Frequency Band EEG

Many researchers have successfully linked brain wave patterns with our brain's mental activity. Any EEG-related research usually starts working with raw EEG data and then categorized them into five known frequency labels known as Alpha wave, Beta wave, Delta wave, Theta, and Gamma wave. However, in many devices, only Alpha, Beta, Delta, and Theta are most widely used for EEG signal analysis or any brainwave-related study. It has been known for decades that our brain releases brainwaves when we do tasks for various cognitive functions. Moreover, can be divided again to 5 frequency band mentioned above only. Gamma frequency has been proven to be the predictor of information processing in our internal brain Beta waves, on the other hand primarily generated in the left hemisphere. That correlates to Decision-making, problem-solving, attentiveness. The increase of Beta brain activity correlates with higher energy consumption too. Alpha waves are quiet and opposite and have been known to be a biomarker or relaxed state of mind. Moreover, primarily generated in the brain's right hemisphere and has been associated with the production of hormones that decrease pain and cognitive stress. These frequency bands will be used as an indicator

when examining the student brainwave and to be a basis of concern when measuring the effectiveness of the procedures that we propose in this research.

III. METHOD

A. Designing of The System

The design process of *Dasa Aksara* software is shown in the figure below:

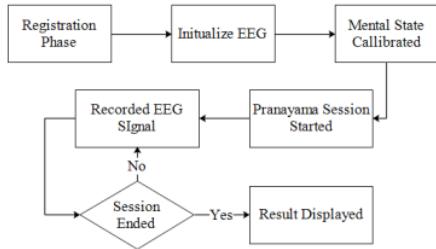


Fig. 2. Dasa Aksara Training Software Context Diagram

The software is initiated and you will be asked to put your credential that will be linked to the folder where your recording session result is stored and after that and will automatically checking if there is any EEG compatible device detected in the system if the device is detected our internal mental state recognition programs will start working and detecting your current mental state and will recommend the session interval depends on your predicted state and then our pranayama guidance voiceover will be started and your brainwave will start to be recorded and the system will display the diagram regarding your training result or any data that recorded before in display result page. Regarding the recognition system that we use is designed and developed per this specification in diagram shown below.

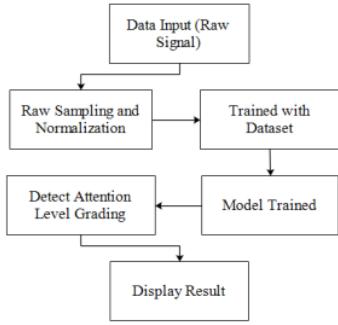


Fig. 3. Focus Recognition System Trained in The Dasa Aksara System

The process started when the device input takes the data is then feed straightforwardly to the preprocessing module when the data is trimmed using Min-Max normalization algorithm, and then the data is compared to the dataset and be trained to be fixated in a model for later use. This model will recognize two states in general, an unfocused state and a focused state. The model is then stored in an internal database for later use. Once the participant is using the program, the classifier will record and predict the participant's mental state at any given time, the participant will give it a scale and put it into a plotter when the plotter

will put the output into the graph that the user or expert can interpret.

Fig. 4. Neurosky Mindwave Used by Student

In this research we use cheap and affordable single band commercial EEG device from Neurosky as a objective apparatus that help evaluate the brainwave quality and improvement of the participant thus eliminating the need of self-assessment of attention level for each participant.

8

IV. RESULT AND DISCUSSION

A. Result

The result of the development is a guided self-breathing exercise programme is started with a login page which the participant can then use their username to enter the game. The entrance of the game is shown below.

Fig. 5. Welcome Page of The System

The registered participant that have given credential thus having the access for both username and password and the credential clicked and validated by the system, meanwhile if the user is not registered they can click the registration link.

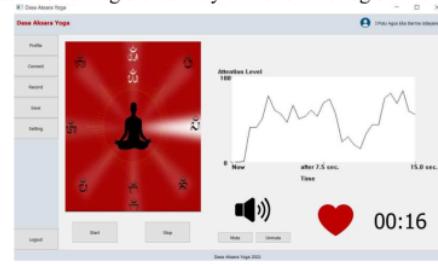


Fig. 6. Guided Dasa-aksara Training and Brainwave

Next you would be arrived at the main menu page which consist of "profile" which the user can see their profile and saved email address for data exporting. Second is a menu connect which user can check the connection of the device which as we mentioned above in need of registered EEG connection. Record when the functionality

of recording the data is triggered which will allow the system to record the real time brainwave data of the participant. "Save" the menu is when the EEG report provided by the system is delivered as text file. Setting is when the user decided the path file of the exported file and the length of guided meditation exercise. The main feature of the system is the guided meditation which composed of *Dasa Aksara* yoga breathing exercise which will be guided thru 2 phases of information provided either from sound and illustration of the visualization. Which would be highlighted as the process thru by the highlighter part of the system and then the right part of the system which contain the report and progress of the participant attention level which a user can be supervised also freely.

Fig. 7. Visualization Instruction and Guided Instruction

Table 2 is composed of the research result where the participant level of attention is compared side by side to the system administered.

TABLE II. RESULT OF INCREASE ATTENTION LEVEL

Person	Without Dasa Aksara		With Dasa Aksara		Increase Attention Level(%)
	Gamma Wave	Attention Level	Gamma Wave	Attention Level	
1	33228	56	43000	65	16.07
2	5293	40	18000	47	17.50
3	57243	47	62000	54	14.89
4	49960	47	58000	53	12.77
5	44790	47	57000	53	12.77
6	33782	44	60000	53	20.45
7	62938	44	67000	53	20.45
8	3266	43	9000	55	27.91
9	73756	40	88000	50	25.00
10	88000	43	93000	55	27.91
11	32551	47	57000	55	17.02
12	46799	51	62000	62	21.57
13	74875	53	82000	62	16.98
14	69203	48	77000	67	39.58
15	41013	45	58000	65	44.44
16	47860	55	62000	66	20.00
17	41013	57	67000	66	15.79
18	60378	54	68745	67	24.07
19	18901	57	32750	77	35.09
20	31559	60	37400	76	26.67
Average	45820.40	48.90	57944.75	60.05	22.85

In this table we can see that the increase of the attention level varies from participant to participant but one thing is consistent in this figure which the trend upwards both in gamma wave of the participant (which according to many consensus always correlates with the state of focus) but in average the participant when doing the *Dasa Aksara* pranayama regime before the online learning started and evaluated via single band EEG device.

B. Usability Testing

Usability testing in this study was conducted to measure how easy it is to use the interface of the system created. This test is done by giving several tasks or tasks to the user to interact with the tested system. This task was given to 20 respondents from STMIK STIKOM Indonesia students. After the user completes all the existing functions, the user then fills out the questionnaire distributed based on his experience when performing the task or tasks earlier. Each question in usability testing has represented every aspect described by Nielsen's Approach, where the parts are learnability, efficiency, memorability, errors, and satisfaction. Table 3 is the test results from usability testing:

TABLE III. THE RESULT OF USABILITY TESTING

No	Scoring Criteria	Average Score
1	System Aspect (System)	3.59
2	User Aspect (User)	3.73
3	Aspects of Interaction (Interaction)	3.63

Table 3 shows the value of user acceptance or user satisfaction on each aspect of the assessment on usability testing. It can be seen that all the attributes contained in the usability testing test have a satisfaction value above 3.00 and the average value of the usability testing test is 3.65 or in other words the results of user satisfaction with the applications offered are already at a satisfactory level.

C. Discussion

Limited test result on this little research shows the capacity of *Dasa Aksara* Pranayama to be treated as a breathing exercise to improve student attention level of distance learning participants in STMIK STIKOM Indonesia. Namely, the training increases the gamma waves quality in the participant and would be beneficial to be done before doing lessons. The 20 participants are doing the small test run we provided, reported a increase of focus after the session and with average of 22,85% after the session. The traditional methodology of the waterfall method is also found to be adequate to digitize Bali's cultural heritage since it is in the line of transformation ideas. Turns out for only providing small input namely sound and guided visualization with a little usability testing is also known that participant is having no difficulty doing the session with guided software. The addition of EEG as a countermeasure of participant subjectiveness and also as a real-time benchmark of the training is considered a novelty in Balinese youngsters, thus making the preservation of the *Dasa Aksara* pranayama

knowledge can be much easier to be scaled after the participant is put into sort of pseudo-competition during the session. This research's ultimate goal is to find a medium of traditional Balinese heritage for the Balinese younger generation which should be preserved in whatever measures necessary because of its necessity to be relevant to Balinese people in the digital era.

V. CONCLUSION

To overcome modern problems in the post-pandemic era of education in Bali, it turns out that ancient Balinese art can still be relevant. This ancient heritage and sport, when digitized into the form of Information and Communication Technologies (ICT) and combined with modern technology (EEG), proves to be something that appeals to young Balinese. Evidently, from the 20 participants who signed up to be included in the testing session, all participants experienced a 22.85% increase in the level of attention they felt. From the user's point of view, this application is felt wholeheartedly, with the results of usability testing producing an average score of 3.65 on a scale of 4.

ACKNOWLEDGMENT

The author would like to thank the STMIK STIKOM Indonesia for permission given to conduct the study and financial help provided for the doctoral study at Study Program of Engineering Science, Faculty of Engineering, Udayana University. The authors also thank the chairman of Study Program Engineering Science and the staff for the support and motivation given so that this paper can be presented in the conference.

REFERENCES

- [1] B. Surkhali and K. Garbuja, "Virtual Learning during COVID-19 Pandemic: Pros and Cons," *J. Lumbini Med. Coll.*, vol. 8, no. 1, pp. 19–20, 2020.
- [2] C. M. Morin, J. Carrier, C. Bastien, and R. Godbout, "Sleep and Circadian Rhythm In Response To The COVID-19 Pandemic," *Can. J. Public Heal.*, vol. 111, no. 5, pp. 654–657, 2020.
- [3] P. Prieto-gonz, M. Šutvajov, A. Les, and P. Bart, "Back Pain Prevalence, Intensity, and Associated Risk Factors among Female Teachers in Slovakia during the COVID-19 Pandemic: A Cross-Sectional Study," *Healthcare*, vol. 9, no. 7, p. 860, 2021.
- [4] J. Liu, B. Li, Q. Chen, and J. Dang, "Student health implications of school closures during the covid-19 pandemic: New evidence on the association of e-learning, outdoor exercise, and myopia," *Healthc.*, vol. 9, no. 5, 2021.
- [5] S. Singh, A. Saini, and T. Ahlawat, "Impact of online teaching on health of university students during Covid 19 pandemic crisis," *Pharma Innov. J.*, vol. 10, no. 4, p. 960, 2021.
- [6] A. N. Bahasoan, Wulan Ayuandiani, Muhammad Mukhram, and Aswar Rahmat, "Effectiveness of Online Learning In Pandemic Covid-19," *Int. J. Sci. Technol. Manag.*, vol. 1, no. 2, pp. 100–106, 2020.
- [7] S. Byun and R. E. Slavin, "Educational Responses to the COVID-19 Outbreak in South Korea," *SSRN Electron. J.*, 2020.
- [8] Y. Morsi, P. Maddireddy, and S. Diego, "Swaying Attention: A Software and Hardware Approach to Students Dozing Off During Online Learning," *Proc.*, vol. 1, no. 1, pp. 1–12, 2021.
- [9] A. N. Saleem, N. M. Noori, and F. Ozdamli, "Gamification Applications in E-learning: A Literature Review," *Technol. Knowl. Learn.*, no. January, 2021.
- [10] J. Wang and P. D. Antonenko, "Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning," *Comput. Human Behav.*, vol. 71, pp. 79–89, 2017.
- [11] N. Mheidly, M. Y. Fares, and J. Fares, "Coping With Stress and Burnout Associated With Telecommunication and Online Learning," *Front. Public Heal.*, vol. 8, no. November, 2020.
- [12] Z. Yan, "Self-assessment in the process of self-regulated learning and its relationship with academic achievement," *Assess. Eval. High. Educ.*, vol. 45, no. 2, pp. 224–238, 2020.
- [13] L. Yao, M. L. Chen, X. Sheng, N. Mrachacz-kersting, X. Zhu, and D. Farina, "Using Portable EEG to Assess Human Visual Attention," in *International Conference on Augmented Cognition*, 2017, vol. 10284, pp. 90–98.
- [14] A. Nandi, F. Xhafa, L. Subirats, and S. Fort, "Real-time emotion classification using eeg data stream in e-learning contexts," *Sensors*, vol. 21, no. 5, pp. 1–26, 2021.
- [15] M. Stephen, "The Dasaksara And Yoga In Bali," *J. Hindu Stud.*, vol. 7, no. 2, pp. 179–216, 2014.
- [16] L. A. Y. U. Ratih, "Pengaruh Yoga Pranayama Terhadap Kecemasan Pada Pasien Pra Endoscopy Di Rumah Sakit Balimed," *Sekolah Tinggi Ilmu Kesehatan Bina Usada Bali*, 2021.
- [17] N. Maulana, "Yoga Pranayama Dan Aromaterapi Sebagai Altematif Penanggulangan Rheumatoid Arthritis Pada Lansia," *J. Peduli Masy.*, vol. 3, pp. 73–78, 2021.
- [18] Rakesh Sarwal, Rajinder Dhamija, Khushbu Jain, and Ishwar V. Basavaraddi, "Efficacy of Pranayama in Preventing COVID-19 in Exposed Healthcare Professionals: A Randomized Controlled Trial," *OSF*, no. April, p. 77000, 2019.
- [19] J. Wang *et al.*, "Liuzijue qigong versus traditional breathing training for patients with post-stroke dysarthria complicated by abnormal respiratory control: Results of a single-center randomized controlled trial," *Clin. Rehabil.*, vol. 35, no. 7, pp. 999–1010, 2021.
- [20] D. Jing, D. Liu, S. Zhang, and Z. Guo, "Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment," *Int. J. Transp. Sci. Technol.*, vol. 9, no. 4, pp. 366–376, 2020.
- [21] A. Acri, *Modern hindu intellectuals and ancient texts: Reforming Šaiva Yoga in Bali*, vol. 169, no. 1. 2013.
- [22] W. O. Tatum, A. M. Husain, S. R. Benbadis, and P. W. Kaplan, *Handbook of EEG Interpretation*. 1386.

EEG Study of Dasa Aksara Yoga and Improved Focus on Distance Learning Student

ORIGINALITY REPORT

PRIMARY SOURCES

- 1 M. Stephen. "The Dasaksara and Yoga in Bali",
The Journal of Hindu Studies, 2014 2%
Publication

- 2 D P Y Ardiana, I D M A B Joni, I P A E D
Udayana. "Mobile based chatbot application
for HIV/AIDS counseling using artificial
intelligence markup language approach",
Journal of Physics: Conference Series, 2020 1%
Publication

- 3 icsgteis.unud.ac.id 1%
Internet Source

- 4 I G A K Diafari D.H., I Made Oka Widyantara,
D. M Wiharta, Putu Ardana, Nyoman
Pramaita. "Design and Simulation of Log
Periodic Dipole Array Antenna for 162 MHz
AIS receiver", 2021 International Conference
on Smart-Green Technology in Electrical and
Information Systems (ICSGTEIS), 2021 1%
Publication

- 5 Submitted to Udayana University

6 Ayu Wirdiani, Darma Putra, Made Sudarma, Rukmi Sari Hartati. "Palmprint Identification using SVM and CNN Method", 2021

International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS), 2021

Publication

7 D.N.K. Putra Negara, T.G. Tirta Nindhia, I.W. Surata, Fadjar Hidajat, Made Sucipta.

"Nanopore structures, surface morphology, and adsorption capacity of tabah bamboo-activated carbons", Surfaces and Interfaces, 2019

Publication

8 Kadek Darmaastawan, I Made Sukarsa, Putu Wira Buana. "LINE Messenger as a Transport Layer to Distribute Messages to Partner Instant Messaging", International Journal of Modern Education and Computer Science, 2019

Publication

Certificate of Appreciation

This Certificate is Presented to

Made Sudarma

In Recognition and Appreciation of your contribution as

Author
of Paper:

EEG Study of Dasa Aksara Yoga and Improved Focus on Distance Learning
Student

at The 2021 International Conference on
Smart-Green Technology in
Electrical and Information Systems
on 28-30 October 2021
in Bali - Indonesia

Wayan Gede Ariastina, PhD, MIEEE
General Chair of ICSGTEIS 2021

